A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation. | LitMetric

AI Article Synopsis

  • The paper discusses the challenges and advancements in dealing with missing data in multilevel structures, where data points are nested within higher organizational units (e.g., individuals in neighborhoods).
  • It compares two main imputation methods: joint modeling and chained equations imputation, highlighting their differences in functionality and their appropriateness for various analysis models, particularly in the context of random intercept and random slope analyses.
  • The authors provide four key conclusions derived from simulations, including the recommendation of joint modeling for certain analyses and the effectiveness of chained equations for random slope contexts, while also emphasizing the utility of latent variable formulations for categorical data.

Article Abstract

Although missing data methods have advanced in recent years, methodologists have devoted less attention to multilevel data structures where observations at level-1 are nested within higher-order organizational units at level-2 (e.g., individuals within neighborhoods; repeated measures nested within individuals; students nested within classrooms). Joint modeling and chained equations imputation are the principal imputation frameworks for single-level data, and both have multilevel counterparts. These approaches differ algorithmically and in their functionality; both are appropriate for simple random intercept analyses with normally distributed data, but they differ beyond that. The purpose of this paper is to describe multilevel imputation strategies and evaluate their performance in a variety of common analysis models. Using multiple imputation theory and computer simulations, we derive 4 major conclusions: (a) joint modeling and chained equations imputation are appropriate for random intercept analyses; (b) the joint model is superior for analyses that posit different within- and between-cluster associations (e.g., a multilevel regression model that includes a level-1 predictor and its cluster means, a multilevel structural equation model with different path values at level-1 and level-2); (c) chained equations imputation provides a dramatic improvement over joint modeling in random slope analyses; and (d) a latent variable formulation for categorical variables is quite effective. We use a real data analysis to demonstrate multilevel imputation, and we suggest a number of avenues for future research. (PsycINFO Database Record

Download full-text PDF

Source
http://dx.doi.org/10.1037/met0000063DOI Listing

Publication Analysis

Top Keywords

joint modeling
16
chained equations
16
equations imputation
16
modeling chained
12
imputation
9
multiple imputation
8
random intercept
8
intercept analyses
8
multilevel imputation
8
multilevel
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: