You Are What You Eat: Metabolic Control of Bacterial Division.

Trends Microbiol

The ithree institute, University of Technology, Sydney, NSW, Australia. Electronic address:

Published: March 2016

Fluctuations in nutrient availability are a fact of life for bacterial cells in the 'wild'. To survive and compete, bacteria must rapidly modulate cell-cycle processes to accommodate changing nutritional conditions and concomitant changes in cell growth. Our understanding of how this is achieved has been transformed in recent years, with cellular metabolism emerging as a central player. Several metabolic enzymes, in addition to their normal catalytic functions, have been shown to directly modulate cell-cycle processes in response to changing nutrient levels. Here we focus on cell division, the final event in the bacterial cell cycle, and discuss recent compelling evidence connecting division regulation to nutritional status and metabolic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tim.2015.11.007DOI Listing

Publication Analysis

Top Keywords

modulate cell-cycle
8
cell-cycle processes
8
eat metabolic
4
metabolic control
4
control bacterial
4
bacterial division
4
division fluctuations
4
fluctuations nutrient
4
nutrient availability
4
availability fact
4

Similar Publications

Structures and mRNP remodeling mechanism of the TREX-2 complex.

Structure

January 2025

Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA. Electronic address:

mRNAs are packaged with proteins into messenger ribonucleoprotein complexes (mRNPs) in the nucleus. mRNP assembly and export are of fundamental importance for all eukaryotic gene expression. Before export to the cytoplasm, mRNPs undergo dynamic remodeling governed by the DEAD-box helicase DDX39B (yeast Sub2).

View Article and Find Full Text PDF

Corynoline (COR) is an isoquinoline alkaloid derived from the traditional Chinese medicine Corydalis bungeana Turcz, known for its analgesic, antibacterial, neuroprotective, and osteoporosis-alleviating properties. However, its potential molecular effects against osteosarcoma (OS) remain unclear, warranting further investigation. This study demonstrated that COR inhibits OS cell proliferation and promotes apoptosis in a dose-dependent manner.

View Article and Find Full Text PDF

Biphasic in vitro oocyte maturation (IVM) can be offered as a patient-friendly alternative to conventional ovarian stimulation in in vitro fertilization (IVF) patients predicted to be hyper-responsive to ovarian stimulation. However, cumulative live birth rates after IVM per cycle are lower than after conventional ovarian stimulation for IVF. In different animal species, supplementation of IVM media with oocyte-secreted factors (OSFs) improves oocyte developmental competence through the expression of pro-ovulatory genes in cumulus cells.

View Article and Find Full Text PDF

Although curcumin is a well-known natural polyphenol with many biological activities, its clinical application has been limited by low aqueous solubility and stability. Therefore, curcumin derivatives have been proposed to overcome these limitations and increase anticancer activity. This study tested curcumin derivatives with modified feruloyl moieties ( and ) and the β-diketo moiety () to better understand their anticancer mechanism against human bladder cancer cells.

View Article and Find Full Text PDF

The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!