Camellia tenuifloria is an indigenous Camellia species used for the production of camellia oil in Taiwan. This study investigated for the first time the potential antioxidant, anti-tyrosinase and anti-inflammatory activities of oil production byproducts, specifically those of the fruit shell, seed shell, and seed pomace from C. tenuifloria. It was found that the crude ethanol extract of the seed shell had the strongest DPPH scavenging and mushroom tyrosinase inhibitory activities, followed by the fruit shell, while seed pomace was the weakest. The IC50 values of crude extracts and fractions on monophenolase were smaller than diphenolase. The phenolic-rich methanol fraction of seed shell (SM) reduced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. It also repressed the expression of IL-1β, and secretion of prostaglandin E₂ (PGE₂) and IL-6 in response to LPS. SM strongly stimulated heme oxygenase 1 (HO-1) expression and addition of zinc protoporphyrin (ZnPP), a HO-1 competitive inhibitor, reversed the inhibition of NO production, indicating the involvement of HO-1 in its anti-inflammatory activity. The effects observed in this study provide evidence for the reuse of residues from C. tenuifloria in the food additive, medicine and cosmetic industries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691127PMC
http://dx.doi.org/10.3390/ijms161226184DOI Listing

Publication Analysis

Top Keywords

shell seed
12
seed shell
12
antioxidant anti-tyrosinase
8
anti-tyrosinase anti-inflammatory
8
anti-inflammatory activities
8
activities oil
8
oil production
8
camellia tenuifloria
8
fruit shell
8
seed pomace
8

Similar Publications

This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.

View Article and Find Full Text PDF

Chemical profile changes in Peanut seeds infected with aspergillus flavus via widely targeted metabolomics.

Food Chem

January 2025

Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, Guangdong Province 510640, China. Electronic address:

Peanut seeds are enriched with protein and fatty acids, making them susceptible to infection by Aspergillus flavus (A. flavus). The infected seeds are harmful to human health due to the aflatoxin contamination.

View Article and Find Full Text PDF

In this work, we synthesize a quinoline-based heptamethine cyanine, QuCy7, with sulfonate groups to enhance water solubility. This dye demonstrates exceptional near-infrared absorption beyond 750 nm, accompanied by photothermal properties but low photostability. Encapsulating QyCy7 with polyethylene glycol to form nanopolymer, QuCy7@mPEG NPs, addresses the issue of its photoinstability.

View Article and Find Full Text PDF

A sunflower seed shell matrix catalyst (SMS-750) was prepared from sunflower seed shell waste by pretreatment and pyrolytic carbonization. A series of characterization analyses showed that the prepared catalyst was rich in Ca, Mg, K, and other mineral elements and mainly existed in the form of metal oxides. SMS-750 was used to catalyze the glycolysis of waste PET, and the main factors affecting the BHET yield were screened out by a one-way experimental design, and then the BHET yield was used as the response value, and the response surface method was used to design and analyze the effects of the respective variables and their interactions on the degradation of PET according to the principle of Box-Behnken central combinatorial design.

View Article and Find Full Text PDF

Genetic Diversity of Sangihe Nutmeg ( Houtt.) Based on Morphological and ISSR Markers.

Scientifica (Cairo)

December 2024

Laboratory of Plant Systematics, Department of Biology, Faculty of Biology, Universitas Gadjah Mada, Sekip Utara Street, Sleman, Yogyakarta 55281, Indonesia.

Sangihe nutmeg is an important crop because of its usefulness in the pharmacology, spices and cosmetics industries. Sangihe is the oldest active subduction zone island in the Indonesia-Philippines region, where frequent tectonic earthquakes and the geographic and reproductive isolation of Sangihe nutmeg occur. This isolation results in adaptation and speciation because of increasing variability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!