Repeated Estradiol Treatment Attenuates Chronic Cerebral Hypoperfusion-Induced Neurodegeneration in Rat Hippocampus.

Cell Mol Neurobiol

Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia.

Published: August 2016

Although a substantial number of pre-clinical and experimental studies have investigated effects of 17β-estradiol, its precise molecular mechanism of action in the early state of chronic cerebral hypoperfusion remains controversial. The present study attempted to verify whether post-ischemic estradiol treatment (33.3 μg/kg for seven consecutive days) affects previously reported number of hippocampal apoptotic cells and amount of DNA fragmentation characteristic for apoptosis as well as the expression of key elements within synaptosomal Akt and Erk signal transduction pathways (NF-κB, Bax, Bcl-2, cytochrome C, caspase 3, and PARP). Additionally, alterations of aforementioned molecules linked to protection in various neurodegenerative disorders were monitored in the cytosolic, mitochondrial, and nuclear fractions associating investigated kinases and NF-κB with gene expression of their downstream effectors-Bcl-2, Bax, and caspase 3. The results revealed that an initial increase in the number of apoptotic cells and amount of DNA fragmentation induced by chronic cerebral hypoperfusion was significantly reduced by 17β-estradiol. In synaptic regions, an altered profile with respect to the protein expression of Bcl-2 and phosphorylated Akt was detected, although the level of other examined proteins was not modified. In other investigated sub-cellular fractions, 17β-estradiol elicited phosphorylation and translocation of Akt and Erk along with modulation of the expression of their subsequent effectors. Our findings support the concept that repeated post-ischemic 17β-estradiol treatment attenuates neurodegeneration induced by chronic cerebral hypoperfusion in hippocampus through the activation of investigated kinases and regulation of their downstream molecules in sub-cellular manner indicating a time window and regime of its administration as a valid therapeutic intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-015-0289-0DOI Listing

Publication Analysis

Top Keywords

chronic cerebral
16
cerebral hypoperfusion
12
estradiol treatment
8
treatment attenuates
8
apoptotic cells
8
cells amount
8
amount dna
8
dna fragmentation
8
akt erk
8
investigated kinases
8

Similar Publications

Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure.

View Article and Find Full Text PDF

Genetic enhancement: an avenue to combat aging-related diseases.

Life Med

December 2022

State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Aging is a major risk factor for multiple diseases, including cardiovascular diseases, neurodegenerative disorders, osteoarthritis, and cancer. It is accompanied by the dysregulation of stem cells and other differentiated cells, and the impairment of their microenvironment. Cell therapies to replenish the abovementioned cells provide a promising approach to restore tissue homeostasis and alleviate aging and aging-related chronic diseases.

View Article and Find Full Text PDF

Leucine deprivation results in antidepressant effects via GCN2 in AgRP neurons.

Life Metab

February 2023

Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.

Essential amino acids (EAAs) are crucial nutrients, whose levels change in rodents and patients with depression. However, how the levels of a single EAA affects depressive behaviors remains elusive. Here, we demonstrate that although deprivation of the EAA leucine has no effect in unstressed mice, it remarkably reverses the depression-like behaviors induced by chronic restraint stress (CRS).

View Article and Find Full Text PDF

Background: The non-saponin (NS) fraction is an important active component of with multifunctional pharmacological activities including neuroprotective, immune regulatory, anti-inflammatory, and antioxidant effects. However, the effects of NSs on multiple sclerosis (MS), a chronic and autoimmune demyelinating disorder, have not yet been demonstrated.

Purpose: and Methods: The goal of the present study was to demonstrate the pharmacological actions of NSs on movement dysfunctions and the related mechanisms of action using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

View Article and Find Full Text PDF

Neural innervation in adipose tissue, gut, pancreas, and liver.

Life Metab

August 2023

Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.

Efficient communication between the brain and peripheral organs is indispensable for regulating physiological function and maintaining energy homeostasis. The peripheral nervous system (PNS) in vertebrates, consisting of the autonomic and somatic nervous systems, bridges the peripheral organs and the central nervous system (CNS). Metabolic signals are processed by both vagal sensory nerves and somatosensory nerves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!