Locally excitable Cdc42 signals steer cells during chemotaxis.

Nat Cell Biol

Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

Published: February 2016

Neutrophils and other amoeboid cells chemotax by steering their front ends towards chemoattractant. Although Ras, Rac, Cdc42 and RhoA small GTPases all regulate chemotaxis, it has been unclear how they spatiotemporally control polarization and steering. Using fluorescence biosensors in neutrophil-like PLB-985 cells and photorelease of chemoattractant, we show that local Cdc42 signals, but not those of Rac, RhoA or Ras, precede cell turning during chemotaxis. Furthermore, pre-existing local Cdc42 signals in morphologically unpolarized cells predict the future direction of movement on uniform stimulation. Moreover, inhibition of actin polymerization uncovers recurring local Cdc42 activity pulses, suggesting that Cdc42 has the excitable characteristic of the compass activity proposed in models of chemotaxis. Globally, Cdc42 antagonizes RhoA, and maintains a steep spatial activity gradient during migration, whereas Ras and Rac form shallow gradients. Thus, chemotactic steering and de novo polarization are both directed by locally excitable Cdc42 signals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015690PMC
http://dx.doi.org/10.1038/ncb3292DOI Listing

Publication Analysis

Top Keywords

cdc42 signals
16
local cdc42
12
locally excitable
8
cdc42
8
excitable cdc42
8
ras rac
8
signals
4
signals steer
4
cells
4
steer cells
4

Similar Publications

βPix is a guanine nucleotide exchange factor for the Rac1 and Cdc42 small GTPases, which play important roles in dendritic spine morphogenesis by modulating actin cytoskeleton organization. The formation and plasticity of the dendritic spines are essential for normal brain function. Among the alternatively spliced βPix isoforms, βPix-b and βPix-d are expressed specifically in neurons.

View Article and Find Full Text PDF

In motoneurons, spatiotemporal dendritic patterns are established in the ventral nerve cord. While many guidance cues have been identified, the mechanisms of temporal regulation remain unknown. Previously, we identified the actin modulator Cdc42 GTPase as a key factor in this process.

View Article and Find Full Text PDF

Molecular insights into Parkinson's disease and type 2 diabetes mellitus: Metformin's role and genetic pathways explored.

Exp Neurol

January 2025

Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China. Electronic address:

Article Synopsis
  • The study investigates the potential bidirectional relationship between Parkinson's disease (PD) and type 2 diabetes mellitus (T2DM), analyzing shared genetic mechanisms and verifying specific genes involved in the conditions.
  • Using Mendelian randomization, researchers found a positive correlation between PD and T2DM, identifying hub genes that are up-regulated in an animal model, which may indicate shared pathogenic processes.
  • The research highlights metformin's potential role in treating PD aggravated by T2DM by targeting specific genes and pathways related to inflammation and oxidative stress, with molecular docking analysis confirming the stability of metformin's interaction with key proteins.
View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) have achieved great success; however, a subset of patients exhibits no response. Consequently, there is a critical need for reliable predictive biomarkers. Our focus is on CDC42, which stimulates multiple signaling pathways promoting tumor growth.

View Article and Find Full Text PDF

Temperature Regulates Astroglia Morphogenesis Through Thermosensory Circuitry in Caenorhabditis elegans.

Glia

January 2025

State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.

Astrocytes are the most abundant type of macroglia in the brain and play crucial roles in regulating neural development and functions. The diverse functions of astrocytes are largely determined by their morphology, which is regulated by genetic and environmental factors. However, whether and how the astrocyte morphology is affected by temperature remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!