Background: Oat is considered as a moderately salt-tolerant crop that could be used to improve saline and alkaline soil. Previous studies have focused on short-term salt stress exposure (0.5-48 h), while molecular mechanisms of salt tolerance in oat remain unclear.

Results: Long-term salt stress (16 days) increased the levels of superoxide dismutase activity, peroxidase activity, malondialdehyde content, putrescine content, spermidine content and soluble sugar content and reduced catalase activity in oat roots. The stress also caused changes in protein profiles in the roots. At least 1400 reproducible protein spots were identified in a two-dimensional electrophoresis gel, among which 23 were differentially expressed between treated vs control plants and 13 were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

Conclusion: These differentially expressed proteins are involved in five types of biological process: (1) two fructose-bisphosphate aldolases, four alcohol dehydrogenases, an enolase, a UDP-glucuronic acid decarboxylase and an F1-ATPase alpha subunit related to carbohydrate and energy metabolism; (2) a choline monooxygenase related to stress and defense; (3) a lipase related to fat metabolism; (4) a polyubiquitin related to protein degradation; (5) a 14-3-3 protein related to signaling. © 2015 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.7583DOI Listing

Publication Analysis

Top Keywords

oat roots
8
salt stress
8
differentially expressed
8
proteomic analysis
4
analysis salt-responsive
4
salt-responsive proteins
4
oat
4
proteins oat
4
roots avena
4
avena sativa
4

Similar Publications

First report of taxon × salinaslettuce (Subclade 8b hybrid) causing stem and basal rot in lettuce in North America.

Plant Dis

November 2024

USDA Agricultural Research Service, Mycology and Nematology Genetic Diversity and Biology Laboratory, 10300 Baltimore Ave, Beltsville, Maryland, United States, 20705;

Article Synopsis
  • Over 55% of U.S. lettuce is produced in California, with Monterey County as the leading region, where stunted and wilted lettuce varieties were observed in 2023-2024, showing significant disease symptoms.
  • Diseased plants exhibited brown lesions that developed into sunken cavities, with infection rates ranging from 5% to 75%, and lab analysis revealed the presence of Phytophthora, a harmful pathogen associated with these symptoms.
  • Genetic analysis of the isolates indicated hybridization among different Phytophthora species, suggesting the emergence of a new hybrid taxon proposed as P. taxon ×salinaslettuce, which was tested for pathogenicity on various lettuce cultivars.
View Article and Find Full Text PDF

Elucidating the eco-friendly herbicidal potential of microbial metabolites from Bacillus altitudinis.

World J Microbiol Biotechnol

October 2024

Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.

Microbial herbicides play a vital role in agricultural preservation, amid growing concerns over the ecological impact from extensive development and use of chemical herbicides. Utilizing beneficial microbial metabolites to combat weeds has become a significant focus of research. This study focused on isolating herbicidal active compounds from Bacillus altitudinis D30202 through activity-guided methods.

View Article and Find Full Text PDF

Investigating oat tissue microflora during its different developmental stages is necessary for understanding its growth and anti-disease mechanism. In this study, 16S rDNA and ITS (Internally Transcribed Spacer) high-throughput sequencing technology were used to explore the microflora diversity of oat tissue. Twenty-seven samples of leaves, stems, and roots from three developmental stages, namely the seedling stage (SS), jointing stage (JS), and maturity stage (MS), underwent sequencing analysis.

View Article and Find Full Text PDF

Background: This study aimed to investigate the alterations in biochemical and physiological responses of oat plants exposed to antimony (Sb) contamination in soil. Specifically, we evaluated the effectiveness of an arbuscular mycorrhizal fungus (AMF) and olive mill waste (OMW) in mitigating the effects of Sb contamination. The soil was treated with a commercial strain of AMF (Rhizophagus irregularis) and OMW (4% w/w) under two different levels of Sb (0 and 1500 mg kg soil).

View Article and Find Full Text PDF

Transcriptomic analysis of the response of to DGL1.

Front Microbiol

April 2024

College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China.

Introduction: DGL1, isolated from the arid sandy areas in Dagler, Qinghai Province, China, promotes the growth of variety "Qing Yan 1".

Methods: To elucidate the transcriptomic changes in the oat root system following interaction with DGL1 and to reveal the molecular mechanism by which DGL1 promotes oat growth, treatment and control groups of oat roots at 2, 4, 8, and 12 h after inoculation with a suspension of strain DGL1 were analyzed using Illumina high-throughput transcriptome sequencing technology. The differentially expressed genes were determined through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the metabolic pathways and key genes were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!