The role of K(+) channels in macrophage immunomodulation has been well-established. However, it remains unclear whether K(+) channels are involved in the lipid uptake of macrophages. The expression and function of the inward rectifier potassium channel (Kir2.1, KCNJ2) in Human acute monocytic leukemia cell line (THP-1) cells and human monocytes derived macrophages (HMDMs) were investigated using RT-PCR and western blotting, and patch clamp technique. The expression of scavenger receptors in THP-1-derived macrophages was detected using western blotting. Expressions of Kir2.1 mRNA and protein in HMDMs were significantly decreased by 60% (P < 0.05) and 90% (P < 0.001) on macrophage maturation, but overexpressed by approximately 1.3 (P > 0.05) and 3.8 times (P = 0.001) after foam cell formation respectively. Concurrently, the Kir2.1 peak current density in HMDMs, mature macrophages and foam cells, measured at -150 mV, were -22.61 ± 2.1 pA/pF, -7.88 ± 0.60 pA/pF and -13.39 ± 0.80 pA/pF respectively (P < 0.05). In association with an up-regulation of Kir2.1 in foam cells, the SR-A protein level was significantly increased by over 1.5 times compared with macrophages (P < 0.05). THP-1 cells contained much less lipids upon Kir2.1 knockdown and cholesterol ester/total cholesterol ratio was 29.46 ± 2.01% (P < 0.05), and the SR-BI protein level was increased by over 6.2 times, compared to that of macrophages (P < 0.001). Kir2.1 may participate in macrophage maturation and differentiation, and play a key role in lipid uptake and foam cell formation through modulating the expression of scavenger receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759473PMC
http://dx.doi.org/10.1111/jcmm.12705DOI Listing

Publication Analysis

Top Keywords

foam cell
12
lipid uptake
8
thp-1 cells
8
western blotting
8
expression scavenger
8
scavenger receptors
8
macrophage maturation
8
cell formation
8
foam cells
8
protein level
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!