Converging observations from disparate lines of inquiry are beginning to clarify the cause of brain iron dyshomeostasis in sporadic Creutzfeldt-Jakob disease (sCJD), a neurodegenerative condition associated with the conversion of prion protein (PrP(C)), a plasma membrane glycoprotein, from α-helical to a β-sheet rich PrP-scrapie (PrP(Sc)) isoform. Biochemical evidence indicates that PrP(C) facilitates cellular iron uptake by functioning as a membrane-bound ferrireductase (FR), an activity necessary for the transport of iron across biological membranes through metal transporters. An entirely different experimental approach reveals an evolutionary link between PrP(C) and the Zrt, Irt-like protein (ZIP) family, a group of proteins involved in the transport of zinc, iron, and manganese across the plasma membrane. Close physical proximity of PrP(C) with certain members of the ZIP family on the plasma membrane and increased uptake of extracellular iron by cells that co-express PrP(C) and ZIP14 suggest that PrP(C) functions as a FR partner for certain members of this family. The connection between PrP(C) and ZIP proteins therefore extends beyond common ancestry to that of functional cooperation. Here, we summarize evidence supporting the facilitative role of PrP(C) in cellular iron uptake, and implications of this activity on iron metabolism in sCJD brains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964862PMC
http://dx.doi.org/10.1080/19336896.2015.1118602DOI Listing

Publication Analysis

Top Keywords

iron uptake
12
plasma membrane
12
iron
8
prpc
8
cellular iron
8
zip family
8
prion-zip connection
4
connection cousins
4
cousins partners
4
partners iron
4

Similar Publications

Function, structure, and regulation of Iron Regulated Transporter 1.

Plant Physiol Biochem

December 2024

Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China. Electronic address:

Iron (Fe) is an essential mineral for the growth and development of plants, as it serves as a vital co-factor for a multitude of enzymes that participate in a variety of physiological processes. Plants obtain Fe from the soil through their Fe uptake systems. Non-graminaceous plants utilize a reduction-based system for Fe uptake, which involves the conversion of Fe(III) to Fe(II) and subsequent absorption of Fe(II).

View Article and Find Full Text PDF

Unregulated, systemic inflammation negatively impacts health and production in dairy cows. Soluble mediators and platelets have been studied for their expansive role in mediating inflammation. Our objectives were to compare the plasma oxylipin and endocannabinoid profiles, and the platelet and plasma proteomic profiles of healthy cows to cows experiencing elevated systemic inflammation as indicated by plasma haptoglobin (Hp) concentrations.

View Article and Find Full Text PDF

Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress.

View Article and Find Full Text PDF

Defining the role of Hmu and Hus systems in Porphyromonas gingivalis heme and iron homeostasis and virulence.

Sci Rep

December 2024

Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland.

Iron and heme are essential nutrients for all branches of life. Pathogenic members of the Bacteroidota phylum, including Porphyromonas gingivalis, do not synthesize heme and rely on host hemoproteins for heme as a source of iron and protoporphyrin IX. P.

View Article and Find Full Text PDF

Resynthesis of Damaged Fe-S Cluster Proteins Protects Against Oxidative Stress in the Absence of Mn-Superoxide Dismutase.

J Fungi (Basel)

November 2024

Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.

Article Synopsis
  • Manganese superoxide dismutase (Mn-SOD) is vital for maintaining mitochondrial function, and its absence heightens sensitivity to oxidative stress and iron limitation.
  • Deleting the Mn-SOD gene resulted in increased vulnerability to oxidative damage and made fungal spores more susceptible to destruction by human immune cells.
  • Analysis revealed that this gene deletion notably altered the oxidative stress response, impacting the regulation of genes related to iron management and protein synthesis in response to stress.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!