Trans carbamates have been prepared in a diastereoselective approach by a judicious one-pot combination of organic carbonates, prepared in situ, and suitable amine reagents under appropriate reaction conditions. This unprecedented approach allows for stereodivergence from a single oxirane substrate with easy access to both cis and trans carbamate isomers with high stereoselectivity (>19:1 d.r.). Key to the control of the diastereoselective nature of the conversions that lead to the trans carbamates is the in situ formation of trans-configured oligo/polycarbonates through Al catalysis, which provides the targeted products after aminolysis. The present results demonstrate the valorization of a renewable carbon-based reagent (CO2) into new valuable scaffolds and an unusual stereocontrol exerted through carbonate intermediates. A series of control experiments support the proposed mechanistic rationale towards the trans carbamate products, which is based on the trapping of an in situ formed trans-configured oligo/polycarbonate.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201504510DOI Listing

Publication Analysis

Top Keywords

carbonate intermediates
8
trans carbamates
8
trans carbamate
8
stereodivergent carbamate
4
carbamate synthesis
4
synthesis selective
4
situ
4
selective situ
4
situ trapping
4
trapping organic
4

Similar Publications

Temperature-dependent pathways in carbon dioxide electroreduction.

Sci Bull (Beijing)

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. Electronic address:

Temperature affects both the thermodynamics of intermediate adsorption and the kinetics of elementary reactions. Despite its extensive study in thermocatalysis, temperature effect is typically overlooked in electrocatalysis. This study investigates how electrolyte temperature influences CO electroreduction over Cu catalysts.

View Article and Find Full Text PDF

Enhanced priming effect in agricultural soils driven by high-quality exogenous organic carbon additions: A meta-analysis.

Sci Total Environ

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China. Electronic address:

The addition of exogenous organic carbon (C) to soil can either accelerate or retard the soil organic carbon (SOC) mineralization, i.e., the priming effect (PE), which plays a crucial role in SOC sequestration and thus is significant in the context of global warming.

View Article and Find Full Text PDF

Development, analysis, and effectiveness of an F-C-MgO/rGOP catalyst for the degradation of atrazine using ozonation process: Synergistic effect, mechanism, and toxicity assessment.

J Environ Manage

January 2025

Department of Chemistry, College of Science and Humanites at Al-Quway'iyahl, Shaqra University, Saudi Arabia. Electronic address:

This study considered the effects of fluoride, MgO, sucrose, and rGO on the characteristics of the fluoride-carbon-MgO/rGO predicted (F-C-MgO/rGOP) catalyst and its effectiveness in the catalytic ozonation process (COP) for atrazine elimination from aqueous solutions. Using a mixture design, the catalyst composition was optimized to 13.6% sucrose, 50% Mg (OH)2, 25% NaF, and 11.

View Article and Find Full Text PDF

Bioelectronic and photogenerated electron synergistic catalyzed removal of chlorhexidine: Degradation and mechanism.

J Hazard Mater

January 2025

College of Water Sciences, Beijing Normal University, Beijing 100875, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087,  China; National University of Singapore, Department of Civil and Environmental Engineering, 1 Engineering Drive 2, 117576, Singapore. Electronic address:

The extensive use of the antimicrobial compound chlorhexidine (CHD) has emerged as a significant threat to both the ecological environment and human health. To address this concern, a photo-electrochemical cell-microbial fuel cell (PMFC) system was studied for CHD removal by incorporating, for the first time, the photocatalysts black phosphorus/carbon nitride (BPCN) and CuO into the bioanode and air cathode of an MFC, respectively. By combining electrochemical, macro-genomic, and intermediate product analyses, the underlying mechanisms of bioelectronic and photoelectronic synergies were elucidated.

View Article and Find Full Text PDF

Developing high-energy-density lithium-sulfur batteries faces serious polysulfide shuttle effects and sluggish conversion kinetics, often necessitating the excessive use of electrolytes, which in turn adversely affects battery performance. Our study introduces a meticulously designed electrocatalyst, Cu-CeO@N/C, to enhance lean-electrolyte lithium-sulfur battery performance. This catalyst, featuring in situ synthesized Cu clusters, regulates oxygen vacancies in CeO and forms Cu-CeO heterojunctions, thereby diminishing sulfur conversion barriers and hastening reaction kinetics through the generation of S/S intermediates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!