Nanoporous materials find widespread applications in our society: from drug delivery to environmentally friendly catalysis and separation technologies. The efficient design of these processes depends crucially on understanding the mass transfer mechanism. This is conventionally determined by uptake or release experiments, carried out with assemblages of nanoporous crystals, assuming all crystals to be identical. Using micro-imaging techniques, we now show that even apparently identical crystals (that is, crystals of similar size and shape) from the same batch may exhibit very different uptake rates. The relative contribution of the surface resistance to the overall transport resistance varied with both the crystal and the guest molecule. As a consequence of this crystal diversity, the conventional approach may not distinguish correctly between the different mass transfer mechanisms. Detection of this diversity adds an important new piece of evidence in the search for the origin of the surface barrier phenomenon. Our investigations were carried out with the zeolite SAPO-34, a key material in the methanol-to-olefins (MTO) process, propane-propene separation and adsorptive heat transformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nmat4510 | DOI Listing |
Front Endocrinol (Lausanne)
January 2025
Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
Background: Thin endometrial thickness (EMT) and advanced age are both common risk factors for adverse neonatal outcomes (ANOs). However, studies evaluating the impact of EMT and combined effect of EMT and age on ANOs remain scarce with conflicts.
Method: A retrospective cohort study was conducted on 7,715 singleton deliveries from frozen embryo transfer (FET) cycles between 2017 and 2021.
Chem Sci
January 2025
Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India https://www.jncasr.ac.in/faculty/tmaji.
Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-:4,5-']dithiophene core with terpyridine (TPY) units alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO reduction.
View Article and Find Full Text PDFFor about 100 years, the shake flask has been established for biotechnological cultivations as one of the most important cultivation systems in early process development. Its appeal lies in its simple handling and highly versatile application for a wide range of cell types-from bacteria to mammalian cells. In recent decades, extensive research has been conducted on the shake flask, to not perform processes blindly but to gain a deeper understanding of the various process parameters, phenomena, and their impact on the process.
View Article and Find Full Text PDFChemistry
January 2025
Karlsruhe Institute of Technology, Institute for biological interfaces 1 (IBG-1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, GERMANY.
Enantioselectivity is a key advantage of enzymatic catalysis. Understanding the most important factors influencing enantioselectivity necessitates thorough investigation for each specific enzyme. In this study, we explore various approaches to optimize reaction conditions for organosilicon production using an immobilized Cytochrome C recently tailored via directed evolution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States.
The permeability-selectivity trade-off in polymeric desalination membranes limits the efficiency and increases the costs of reverse osmosis and nanofiltration systems. Ultrathin contorted polyamide films with enhanced free volume demonstrate an impressive 8-fold increase in water permeance while maintaining equivalent salt rejection compared to conventional polyamide membranes made with -phenylenediamine and trimesoyl chloride monomers. The solution-based molecular layer-by-layer (mLbL) deposition technique employed for membrane fabrication sequentially reacts a shape-persistent contorted diamine monomer with a trimesoyl chloride monomer, forming highly cross-linked, dense polyamide networks while avoiding the kinetic and mass transfer limitations of traditional interfacial polymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!