Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrodiagnostic (EDX) patterns of neuropathic dysfunction have been based on axonal/demyelinating criteria requiring prior assumptions. This has not produced classifications of desired sensitivity or specificity. Furthermore, standard nerve conduction studies have limited reproducibility. New methodologies in EDX seem important. Recurrent Quantification Analysis (RQA) is a nonlinear method for examining patterns of recurrence. RQA might provide a unique method for the EDX evaluation of neuropathies. RQA was used to analyze F-wave recordings from the abductor hallucis muscle in 61 patients with neuropathies. Twenty-nine of these patients had diabetes as the sole cause of their neuropathies. In the other 32 patients, the etiologies of the neuropathies were diverse. Commonly used EDX variables were also recorded. RQA data could separate the 29 patients with diabetic neuropathies from the other 32 patients (P < 0.009). Statistically significant differences in two EDX variables were also present: compound muscle action potential amplitudes (P < 0.007) and F-wave persistence (P < 0.001). RQA analysis of F-waves seemed able to distinguish diabetic neuropathies from the other neuropathies studied, and this separation was associated with specific physiological abnormalities. This study would therefore support the idea that RQA of F-waves can distinguish between types of neuropathic dysfunction based on EDX data alone without prior assumptions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672360 | PMC |
http://dx.doi.org/10.1155/2015/183608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!