Asymmetric transformations of achiral 2,5-cyclohexadienones.

Tetrahedron

Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant St SE, Minneapolis, Minnesota 55455, United States.

Published: December 2014

Cyclohexadienones are versatile platforms for performing asymmetric synthesis as evidenced by the numerous natural product syntheses that exploit their diverse reactivity profile. However, there are few general methods available for the direct asymmetric synthesis of chiral cyclohexadienones. To circumvent this problem, several researchers have developed catalytic asymmetric methods that employ readily available achiral 2,5-cyclohexadienones as substrates. Many of these reactions are desymmetrizations in which one of the enantiotopic alkenes of an achiral dienone is transformed. Others involve selective reaction at one alkene of an unsymmetrically substituted, achiral dienone. This review will cover advances in this area over the last 20 years and the application of these strategies in complex molecule synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681530PMC
http://dx.doi.org/10.1016/j.tet.2014.07.081DOI Listing

Publication Analysis

Top Keywords

achiral 25-cyclohexadienones
8
asymmetric synthesis
8
achiral dienone
8
asymmetric
4
asymmetric transformations
4
achiral
4
transformations achiral
4
25-cyclohexadienones cyclohexadienones
4
cyclohexadienones versatile
4
versatile platforms
4

Similar Publications

A pair of axially chiral thermally activated delayed fluorescent (TADF) enantiomers, R-TCBN-ImEtPF6 and S-TCBN-ImEtPF6, with intrinsic ionic characteristics were efficiently synthesized by introducing imidazolium hexafluorophosphate to chiral TADF unit. The TADF imidazolium salts exhibited a high photoluminescence quantum yield (PLQY) of up to 92%, a small singlet-triplet energy gap (∆EST) of 0.04 eV, as well as reversible redox properties.

View Article and Find Full Text PDF

Decision Trees for the Recognition of Metal-Centered Chirality in Coordination Complexes.

J Comput Chem

January 2025

Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.

While established guidelines exist for chirality in tetrahedral molecules, there is a notable absence of clear rules for recognizing metal-centered chirality in higher-coordination complexes. We develop decision trees to assess the likelihood of chirality-at-metal in coordination complexes with coordination numbers 4-9 with mono and bidentate ligands. Using binary decision rules based on shape, ligand type, and quantity, the trees classify complexes as chiral or achiral.

View Article and Find Full Text PDF

Recently, nickel catalysts have garnered considerable attention for their efficacy and versatility in asymmetric catalysis, attributed to their distinctive properties. However, the use of cost-effective and sustainable divalent nickel catalysts in C-H activation/asymmetric alkene insertion poses significant challenges due to the intricate control of stereochemistry in the transformation of the tetracoordinate C-Ni(II) intermediate. Herein, we report a Ni(II)-catalyzed enantioselective C-H/N-H annulation with oxabicyclic alkenes.

View Article and Find Full Text PDF

Nucleoside derivatives having a 4-substituent show promise as potential antiviral agents as well as nucleoside units for constructing nucleic acid medicines. To develop new nucleosides, it is crucial to achieve feasible access to the intended derivatives, encompassing both enantiomers. Toward this end, we started synthesizing an achiral 4-hydroxymethyldihydrofuran as a sugar precursor, which we subjected to the oxidative glycosylation reaction using hypervalent iodine.

View Article and Find Full Text PDF

Chirality à la carte.

Science

January 2025

Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, Netherlands.

Light drives a fast switching between achiral and chiral states in a crystal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!