A simple method for isocapnic hyperventilation evaluated in a lung model.

Acta Anaesthesiol Scand

Department of Anaesthesiology and Intensive Care medicine, Institution of Clinical Sciences, The Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.

Published: May 2016

Background: Isocapnic hyperventilation (IHV) has the potential to increase the elimination rate of anaesthetic gases and has been shown to shorten time to wake-up and post-operative recovery time after inhalation anaesthesia. In this bench test, we describe a technique to achieve isocapnia during hyperventilation (HV) by adding carbon dioxide (CO2) directly to the breathing circuit of a standard anaesthesia apparatus with standard monitoring equipment.

Methods: Into a mechanical lung model, carbon dioxide was added to simulate a CO2 production (V(CO2)) of 175, 200 and 225 ml/min. Dead space (V(D)) volume could be set at 44, 92 and 134 ml. From baseline ventilation (BLV), HV was achieved by doubling the minute ventilation and fresh gas flow for each level of V(CO2), and dead space. During HV, CO2 was delivered (D(CO2)) by a precision flow meter via a mixing box to the inspiratory limb of the anaesthesia circuit to achieve isocapnia.

Results: During HV, the alveolar ventilation increased by 113 ± 6%. Tidal volume increased by 20 ± 0.1% during IHV irrespective of V(D) and V(CO2) level. D(CO2) varied between 147 ± 8 and 325 ± 13 ml/min. Low V(CO2) and large V(D) demanded a greater D(CO2) administration to achieve isocapnia. The FICO2 level during IHV varied between 2.3% and 3.3%.

Conclusion: It is possible to maintain isocapnia during HV by delivering carbon dioxide through a standard anaesthesia circuit equipped with modern monitoring capacities. From alveolar ventilation, CO2 production and dead space, the amount of carbon dioxide that is needed to achieve IHV can be estimated.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aas.12674DOI Listing

Publication Analysis

Top Keywords

carbon dioxide
16
dead space
12
isocapnic hyperventilation
8
lung model
8
achieve isocapnia
8
standard anaesthesia
8
co2 production
8
anaesthesia circuit
8
alveolar ventilation
8
simple method
4

Similar Publications

Deployment of large numbers of low capital cost sensors to increase the spatial density of air quality measurements enables applications that build on mapping air at neighborhood scales. Effective deployment requires not only low capital costs for observations but also a simultaneous reduction in labor costs. The Berkeley Environmental Air Quality and CO Network (BEACON) is a sensor network measuring O, CO, NO, and NO, particulate matter (PM), and CO at dozens of locations in cities where it is deployed.

View Article and Find Full Text PDF

Spontaneously Photocatalytic Nanoplatform for Sensitive Diagnosis and Penetrated Therapy of Cancer.

Anal Chem

January 2025

Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.

In this study, a sensitive diagnosis and spontaneously photocatalytic therapy of cancer based on chemiluminescence (CL) and nanozyme was studied. Briefly, carbon nitride-supported copper nanoparticles (CuCNs) loaded with luminol (CuCN-L) were utilized to develop a microneedle patch (CuCN-L/MN). The CuCN-L probe could target overexpressed HO in the TME and actively emit CL to achieve cancer cell imaging for diagnosis.

View Article and Find Full Text PDF

Stomata control plant water loss and photosynthetic carbon gain. Developing more generalized and accurate stomatal models is essential for earth system models and predicting responses under novel environmental conditions associated with global change. Plant optimality theories offer one promising approach, but most such theories assume that stomatal conductance maximizes photosynthetic net carbon assimilation subject to some cost or constraint of water.

View Article and Find Full Text PDF

Cobalt-Cluster-Based Metal-Organic-Framework-Catalyzed Carboxylative Cyclization of Propargylic Amines with CO from Flue Gas.

Inorg Chem

January 2025

Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China.

The fixation of carbon dioxide (CO) directly from flue gas into valuable chemicals like 2-oxazolidinones is of great significance for economic and environmental benefits, which is typically catalyzed by noble-metal catalysts and under harsh conditions. Herein, a novel 2-fold interpenetrated framework {[Co(μ-O)(TCA)(HDPTA)]·2HO·2DMF} [Co(II)-based metal-organic framework ()] containing [Co] clusters and highly dense amino groups (-NH) dispersed in the channel was prepared, exhibiting high solvent/pH stability and CO adsorption capacity (24.9 cm·g).

View Article and Find Full Text PDF

The complete tricarboxylic acid (TCA) cycle, comprising a series of 8 oxidative reactions, occurs in most eukaryotes in the mitochondria and in many prokaryotes. The net outcome of these 8 chemical reactions is the release of the reduced electron carriers NADH and FADH, water, and carbon dioxide. The parasites of the .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!