Concentration and degradation of alternative biocides and an insecticide in surface waters and their major sinks in a semi-enclosed sea, Japan.

Chemosphere

Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan. Electronic address:

Published: February 2016

A mass distribution model was used to predict the fate of Diuron, Irgarol 1051 and Fenitrothion in Seto Inland Sea which is located in western Japan. This was done by using concentration, degradation, and literature data. Diuron and Irgarol 1051 in Seto Inland Sea are mainly derived from antifouling paints used for ships and boats. On the other hand Fenitrothion exclusively comes from land via rivers and atmospheric deposition. The total inputs/yr to Seto Inland Sea were found to be 104 tons, 7.65 tons and 5.14 tons for Diuron, Irgarol 1051 and Fenitrothion, respectively. The pesticide residence times were 0.26 yr, 0.36 yr and 0.17 yr for Diuron, Irgarol 1051 and Fenitrothion, respectively. Photodegradation was faster than biodegradation. In seawater, the half-life ranges were 37.9-57.3 d for photodegradation. In the same seawater the half-life ranges were 1650-2394 d for biodegradation. Photodegradation is effective in surface water (0-5 m depth) while biodegradation occurs throughout the entire water column. Plankton and fishes accumulate these pesticides significantly. The pesticides are deposited (sorbed and buried with) sediments (between 74 and 87% of total input amounts). The open ocean is an important sink accounting for between 8 and 17% of the total pesticide input amounts while photo- and biodegradation accounts for a small percentage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2015.11.100DOI Listing

Publication Analysis

Top Keywords

diuron irgarol
16
irgarol 1051
16
1051 fenitrothion
12
seto inland
12
inland sea
12
concentration degradation
8
seawater half-life
8
half-life ranges
8
input amounts
8
degradation alternative
4

Similar Publications

Passive sampling-derived aqueous concentrations of organotins and booster biocides in the largest Port of South America (Southeastern Brazil).

Water Res

December 2024

Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil; Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Rio Grande, RS 96203-900, Brazil. Electronic address:

Organotin compounds (OTs) used to be the most widely used biocide in antifouling paint systems, but the International Maritime Organization (IMO) banned them because of their high environmental toxicity to non-target organisms. Currently, at least 25 active ingredients are being employed as biocides in antifouling paint formulations. In the present study, silicone rubber-based passive sampling was used to determine the freely dissolved concentrations (C) of 6 OTs and 4 booster biocides in the water column at the entrance of Santos Port's main navigation channel, the largest Port of South America (southeastern Brazil).

View Article and Find Full Text PDF

Pesticide contamination and associated ecological risks in estuarine waters of Brazil's Legal Amazon.

Environ Sci Pollut Res Int

December 2024

Laboratório de Química Analítica E Ecotoxicologia (LAEC), Federal University of Maranhão (UFMA), Av. Dos Portugueses, 1966, São Luís, Maranhão, 65080-805, Brazil.

Pesticide contamination remains a significant environmental concern globally, with important implications for aquatic ecosystems. Despite being one of the world's largest pesticide consumers, monitoring and assessment of pesticide pollution are limited in Brazil, especially in sensitive regions like the Amazon. In this study, the occurrence and environmental risks of 8 pesticides of different classes, namely alachlor, atrazine, chlorfenvinphos, isoproturon, irgarol, simazine, diuron, and its transformation product DCPMU (1-(3,4-dichlorophenyl)-3-methyl urea) were analysed in surface water of the São Marcos Estuarine Complex (SMEC) in two consecutive years.

View Article and Find Full Text PDF

Assessing the spatiotemporal occurrence and ecological risk of antifouling biocides in a Brazilian estuary.

Environ Sci Pollut Res Int

January 2024

Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil.

Diuron and Irgarol are common antifouling biocides used in paints to prevent the attachment and growth of fouling organisms on ship hulls and other submerged structures. Concerns about their toxicity to non-target aquatic organisms have led to various restrictions on their use in antifouling paints worldwide. Previous studies have shown the widespread presence of these substances in port areas along the Brazilian coast, with a concentration primarily in the southern part of the country.

View Article and Find Full Text PDF

Current Status of Antifouling Biocides Contamination in the Seto Inland Sea, Japan.

Arch Environ Contam Toxicol

November 2023

Hatsukaichi Branch, Fisheries Technology Institute, Japan, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan.

A monitoring survey of antifouling biocides was conducted in the Harima Nada Sea and Osaka Bay of the Seto Inland Sea, Japan to assess contamination by organotin (OT) compounds and alternative biocides. The concentrations of tributyltin (TBT) compounds in surface water ranged from 1.0 to 2.

View Article and Find Full Text PDF

Besides the release of organic matter from uneaten feed and fish excreta, a considerable amount of deleterious chemicals may also end up into the marine environment from intensive aquaculture. A fraction of these pollutants remains freely dissolved and pose a threat to marine life due to increased bioavailability. Given the filter-feeding ability of sponges, we investigated the capacity of four ubiquitous Mediterranean species (Agelas oroides, Axinella cannabina, Chondrosia reniformis and Sarcotragus foetidus) in removing aquaculture-related dissolved organic pollutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!