Background And Purpose: Radiotherapy that selectively avoids irradiating highly-functional lung regions may reduce pulmonary toxicity. We report on the first clinical implementation and patient treatment of lung functional image-guided radiotherapy using an emerging technology, computed tomography (CT) ventilation imaging.

Material And Methods: A protocol was developed to investigate the safety and feasibility of CT ventilation functional image-guided radiotherapy. CT ventilation imaging is based on (1) deformable image registration of four-dimensional (4D) CT images, and (2) quantitative image analysis for regional volume change, a surrogate for ventilation. CT ventilation functional image-guided radiotherapy plans were designed to minimize specific lung dose-function metrics, including functional V20 (fV20), while maintaining target coverage and meeting standard constraints to other critical organs.

Results: CT ventilation functional image-guided treatment planning reduced the lung fV20 by 5% compared to an anatomic image-guided plan for an enrolled patient with stage IIIB non-small cell lung cancer. Although the doses to several other critical organs increased, the necessary constraints were all met.

Conclusions: An emerging technology, CT ventilation imaging has been translated into the clinic and used in functional image-guided radiotherapy for the first time. This milestone represents an important first step toward hypothetically reduced pulmonary toxicity in lung cancer radiotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radonc.2015.11.006DOI Listing

Publication Analysis

Top Keywords

functional image-guided
24
image-guided radiotherapy
20
ventilation functional
16
lung cancer
12
patient treatment
8
computed tomography
8
ventilation
8
tomography ventilation
8
pulmonary toxicity
8
emerging technology
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!