Cancer growth is determined by the proportion of proliferating to dying cells; thus, the aim of the study was to analyze how proliferation rate and apoptosis level affect disease-free survival (DFS) of breast cancer (BC) patients treated with anthracycline-based chemotherapy. For 172 BC, proliferation rate was investigated by Ki-67 labeling index (Ki-67 LI)-assessed immunohistochemically. Apoptosis level was analyzed by apoptotic index (AI) estimated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. To stratify patients into subgroups with higher and lower DFS and to achieve optimal categorization, optimal cutoff points were searching by minimal P value method. The best separation of DFS curves (P = 0.001) was observed for three categories of AI: (i) AI >1.8 % (DFS = 100 %), (ii) AI ≤0.3 % (DFS = 84.6 %), and (iii) 1.8 % <= AI >0.3 % (DFS = 64.0 %). The highest DFS (86.1 %) was shown for the subgroup with low-proliferating BC (Ki-67 LI ≤18.0 %), intermediate (73.9 %) for patients characterized by Ki-67 LI in the range 18.0-37.0 % and the lowest (60.0 %) for women with fast-proliferating tumors (Ki-67 LI >37.0 %) (P = 0.022). Summarized, minimal P value method allows for optimal separation of survival curves. Apoptosis level and proliferation rate have some prognostic potential for early stage breast cancer patients treated with anthracyclines in adjuvant setting, however, as suggested by multivariate analysis, not as independent prognostic factors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-015-4646-xDOI Listing

Publication Analysis

Top Keywords

proliferation rate
16
breast cancer
12
cancer patients
12
patients treated
12
apoptosis level
12
optimal cutoff
8
cutoff points
8
early stage
8
stage breast
8
treated anthracyclines
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!