On the 13th of May 2014 a fire related incident in the Soma coal mine in Turkey caused 301 fatalities and more than 80 injuries. This has been the largest coal mine accident in Turkey, and in the OECD country group, so far. This study investigated if such a disastrous event should be expected, in a statistical sense, based on historical observations. For this purpose, PSI's ENSAD database is used to extract accident data for the period 1970-2014. Four different cases are analyzed, i.e., OECD, OECD w/o Turkey, Turkey and USA. Analysis of temporal trends for annual numbers of accidents and fatalities indicated a non-significant decreasing tendency for OECD and OECD w/o Turkey and a significant one for USA, whereas for Turkey both measures showed an increase over time. The expectation analysis revealed clearly that an event with the consequences of the Soma accident is rather unlikely for OECD, OECD w/o Turkey and USA. In contrast, such a severe accident has a substantially higher expectation for Turkey, i.e. it cannot be considered an extremely rare event, based on historical experience. This indicates a need for improved safety measures and stricter regulations in the Turkish coal mining sector in order to get closer to the rest of OECD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aap.2015.11.020 | DOI Listing |
Environ Geochem Health
January 2025
Shandong Bureau of China Metallurgical Geology Bureau, Qingdao, 266109, China.
The natural environment and public health are gravely threatened by the enrichment of soil potentially toxic elements (PTEs). To explore the contamination level, sources and human health risks posed by PTEs, high-density soil sampling was carried out in the upper Wei River region (UWRR). The results demonstrated that the pollution risk and ecological risk in UWRR as a whole were at a low level, but there were moderate or higher ecological risks of Hg and Cd in some areas.
View Article and Find Full Text PDFSci Rep
January 2025
College of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
The synergistic utilization of multiple solid waste is an effective means of achieving green filling and resource utilization of solid waste in mines. In this paper, the synergistic effects of solid waste granulated blast furnace slag (GS) and carbide slag (CS) as cementitious materials (GCCM) are investigated, along with their preliminary feasibility in combination with coal gangue (CG) and furnace bottom slag (FBS) for the preparation of backfill materials. The synergistic hydration mechanism, mechanical properties, working performance of GCCM and GBC were studied, and the environmental impact and cost-effectiveness of GBC were evaluated.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Karst Georesources and Environment, College of Resources and Environmental Engineering, Guizhou University, Ministry of Education, Guizhou University, Guiyang, 550025, China.
Mine water influx is a significant geological hazard during mine development, influenced by various factors such as geological conditions, hydrology, climate, and mining techniques. This phenomenon is characterized by non-linearity and high complexity, leading to frequent water accidents in coal mines. These accidents not only impact coal production quality but also jeopardize the safety of mine staff.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mining, Guizhou University, Guiyang, 550025, Guizhou, China.
Acid fracturing fluids can effectively improve the microporous structure of coal, thereby enhancing the permeability of coal seam and the efficiency of gas drainage. To explore the effects of acid fracturing fluids on the pore structure modification of coal samples from different coal ranks, hydrochloric acid-based acid fracturing fluids were prepared and used to soak four types of medium to high-rank coal in an experiment. High-pressure mercury intrusion and liquid nitrogen adsorption techniques results demonstrated that the acid fracturing fluid can effectively alter the pore structure of coal.
View Article and Find Full Text PDFSci Rep
January 2025
Dazhu Coal and Electricity Group of Sichuan, Xiaohezui Coal Mine, Dazhou, 6635000, China.
This study investigates the bearing characteristics and damage evolution of regenerative rock masses formed under varying geological conditions through uniaxial loading tests, numerical simulations, and theoretical derivations. Regenerative rock mass samples with different water-cement ratios and cementing materials were prepared, and the mechanical behavior during the loading process was analyzed. The results indicate that the secondary damage process can be divided into three stages: pre-peak, weakening, and friction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!