Biological activity and in vivo half-life of pro-activin A in male rats.

Mol Cell Endocrinol

Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia. Electronic address:

Published: February 2016

Mature TGF-β proteins are used in vivo to promote bone growth, combat obesity, reverse fibrosis and pulmonary arterial hypertension, and as potential rejuvenation factors. However, the serum half-life of this family of growth factors is short (∼5 min), limiting their therapeutic potential. Because TGF-β proteins are normally secreted from cells with their prodomains attached, we considered whether these molecules could extend the in vivo half-life and activity of their respective growth factors. Using activin A as a model ligand, we initially modified the cleavage site between the pro- and mature domains to ensure complete processing of the activin A precursor. Co-immunoprecipitation studies confirmed mature activin A is secreted from cells in a non-covalent complex with its prodomain, however, the affinity of this interaction is not sufficient to suppress activin A in vitro biological activity. The plasma clearance profiles of purified pro- and mature activin A were determined over a 4 h period in adult male rats. Both activin forms demonstrated a two-phase decay, with the half-life of pro-activin A (t1/2 fast = 12.5 min, slow = 31.0 min) being greater than that of mature activin A (t1/2 fast = 5.5 min, slow = 20.3 min). Both pro- and mature activin A induced significant increases in serum follicle stimulating hormone levels after 4 h, but no differences were observed in the relative in vivo bioactivities of the two activin isoforms. Increased serum half-life of activin A in the presence of its prodomain identifies a new means to increase the therapeutic effectiveness of TGF-β proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2015.12.007DOI Listing

Publication Analysis

Top Keywords

mature activin
16
tgf-β proteins
12
pro- mature
12
activin
10
biological activity
8
in vivo half-life
8
half-life pro-activin
8
male rats
8
serum half-life
8
growth factors
8

Similar Publications

Fish oocyte maturation (FOM) is a critical biological process that occurs before ovulation and is influenced by gonadotropins, particularly luteinizing hormone (LH). The release of LH stimulates the ovarian follicle to produce a maturation-inducing hormone (MIH), specifically 17α, 20β-dihydroxy-4-pregnen-3-one (17α, 20β-DP), which initiates the formation of maturation-promoting factor (MPF) through the activation of cyclin B and cdc2 kinase. Insulin-like growth factor I (IGF-I) significantly regulates ovarian functions, including steroidogenesis, by activating its membrane receptors and the tyrosine kinase pathway.

View Article and Find Full Text PDF
Article Synopsis
  • The study addresses the challenges of researching thyroid gland diseases due to the absence of reliable in vitro models for studying the development and function of thyrocytes.
  • Researchers developed an in vitro model using P19 embryonal carcinoma stem cells to create mature and functional thyrocytes without needing a feeder layer, utilizing Activin A and TSH for differentiation.
  • The resulting thyrocytes can form follicle-like structures and secrete thyroglobulin, and the differentiation process can be monitored over 14 days, allowing for molecular studies into thyrocyte pathways and functions.
View Article and Find Full Text PDF

Improving generation of insulin-producing islets from human pluripotent stem cells (hPSCs) would enhance their clinical relevance for treating diabetes. Here, we demonstrate that cytoskeletal state at the onset of differentiation is critical for definitive endoderm formation. Depolymerizing F-actin with latrunculin A (latA) during the first 24 hours of differentiation facilitates rapid exit from pluripotency and alters Activin/Nodal, BMP, JNK-JUN, and WNT pathway signaling dynamics during definitive endoderm formation.

View Article and Find Full Text PDF

The Activin-A precursor dimer can be cleaved by furin, but how this proteolytic maturation is regulated in vivo and how it facilitates access to signaling receptors is unclear. Here, analysis in a syngeneic melanoma grafting model shows that without furin coexpression, Activin-A failed to accelerate tumor growth, correlating with failure of one or both subunits to undergo cleavage in signal-sending cells, even though compensatory processing by host cells nonetheless sustained elevated circulating Activin-A levels. In reporter assays, furin-independent cleavage of one subunit enabled juxtacrine Activin-A signaling, whereas completion of proteolytic maturation by coexpressed furin or by recipient cells stimulated contact-independent activity, crosstalk with BMP receptors, and signal inhibition by follistatin.

View Article and Find Full Text PDF

Senescent Syncytiotrophoblast Secretion During Early Onset Preeclampsia.

Hypertension

October 2024

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (O.N., D.S.V., J.U., H.B., A.F., N.H., K.K., S.K., D.N.M., R.D., F.H.).

Background: Preeclampsia is a severe hypertensive disorder in pregnancy that causes preterm delivery, maternal and fetal morbidity, mortality, and life-long sequelae. Understanding the pathogenesis of preeclampsia is a critical first step toward protecting mother and child from this syndrome and increased risk of cardiovascular disease later in life. However, effective early predictive tests and therapies for preeclampsia are scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!