Falling in the elderly: Do statistical models matter for performance criteria of fall prediction? Results from two large population-based studies.

Eur J Intern Med

Department of Medicine, Division of Geriatric Medicine, Sir Mortimer B. Davis-Jewish General Hospital and Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada; Holder of Dr. Joseph Kaufmann Chair in Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Centre of Excellence on Aging and Chronic Diseases of McGill Integrated University Health Network, QC, Canada. Electronic address:

Published: January 2016

Objective: To compare performance criteria (i.e., sensitivity, specificity, positive predictive value, negative predictive value, area under receiver operating characteristic curve and accuracy) of linear and non-linear statistical models for fall risk in older community-dwellers.

Methods: Participants were recruited in two large population-based studies, "Prévention des Chutes, Réseau 4" (PCR4, n=1760, cross-sectional design, retrospective collection of falls) and "Prévention des Chutes Personnes Agées" (PCPA, n=1765, cohort design, prospective collection of falls). Six linear statistical models (i.e., logistic regression, discriminant analysis, Bayes network algorithm, decision tree, random forest, boosted trees), three non-linear statistical models corresponding to artificial neural networks (multilayer perceptron, genetic algorithm and neuroevolution of augmenting topologies [NEAT]) and the adaptive neuro fuzzy interference system (ANFIS) were used. Falls ≥1 characterizing fallers and falls ≥2 characterizing recurrent fallers were used as outcomes. Data of studies were analyzed separately and together.

Results: NEAT and ANFIS had better performance criteria compared to other models. The highest performance criteria were reported with NEAT when using PCR4 database and falls ≥1, and with both NEAT and ANFIS when pooling data together and using falls ≥2. However, sensitivity and specificity were unbalanced. Sensitivity was higher than specificity when identifying fallers, whereas the converse was found when predicting recurrent fallers.

Conclusions: Our results showed that NEAT and ANFIS were non-linear statistical models with the best performance criteria for the prediction of falls but their sensitivity and specificity were unbalanced, underscoring that models should be used respectively for the screening of fallers and the diagnosis of recurrent fallers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejim.2015.11.019DOI Listing

Publication Analysis

Top Keywords

statistical models
20
performance criteria
20
sensitivity specificity
12
non-linear statistical
12
neat anfis
12
large population-based
8
population-based studies
8
"prévention des
8
des chutes
8
collection falls
8

Similar Publications

Background: Established risk models may not be applicable to patients at higher cardiovascular risk with a measured Lp(a) (lipoprotein[a]) level, a causal risk factor for atherosclerotic cardiovascular disease.

Methods: This was a model development study. The data source was the Nashville Biosciences Lp(a) data set, which includes clinical data from the Vanderbilt University Health System.

View Article and Find Full Text PDF

Clinical trials (CTs) often suffer from small sample sizes due to limited budgets and patient enrollment challenges. Using historical data for the CT data analysis may boost statistical power and reduce the required sample size. Existing methods on borrowing information from historical data with right-censored outcomes did not consider matching between historical data and CT data to reduce the heterogeneity.

View Article and Find Full Text PDF

A recent study design for clinical trials with small sample sizes is the small n, sequential, multiple assignment, randomized trial (snSMART). An snSMART design has been previously proposed to compare the efficacy of two dose levels versus placebo. In such a trial, participants are initially randomized to receive either low dose, high dose or placebo in stage 1.

View Article and Find Full Text PDF

Aims: Accurate prediction of clinical outcomes following percutaneous coronary intervention (PCI) is essential for mitigating risk and peri-procedural planning. Traditional risk models have demonstrated a modest predictive value. Machine learning (ML) models offer an alternative risk stratification that may provide improved predictive accuracy.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) remains a major cause of mortality in the UK, prompting the need for improved risk predictive models for primary prevention. Machine learning (ML) models utilizing electronic health records (EHRs) offer potential enhancements over traditional risk scores like QRISK3 and ASCVD. To systematically evaluate and compare the efficacy of ML models against conventional CVD risk prediction algorithms using EHR data for medium to long-term (5-10 years) CVD risk prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!