Purpose: To investigate whether intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) can be used to quantitatively analyze the cellular injury and microcirculation alterations in hepatic ischemia-reperfusion injury (HIRI).

Materials And Methods: Thirty-two New Zealand white rabbits were randomly and equally assigned to the sham group, 1-hour, 4-hour, and 12-hour groups according to the reperfusion time after 1 hour of ischemia using a 70% liver ischemia-reperfusion injury model. All the animals underwent IVIM-DWI with 12 b values at 1.5T. The imaging parameters (IVIM parameters and apparent diffusion coefficient [ADC]) among different groups were compared. The correlations between imaging parameters and histological scores, and the ratio of serum aspartate aminotransferase to serum alanine aminotransferase (serum AST/ALT) were analyzed.

Results: During the first hour of HIRI, true diffusion coefficient (D) and ADC significantly decreased (P < 0.05), while there was no significant decrease in perfusion fraction (f) (P = 0.708). There was fair to good correlation between histological scores and f (rs  = -0.493 with the sham cases excluded, and -0.682 with all cases, both P < 0.05) and ADC (rs  = -0.479 with the sham cases excluded, and -0.766 with all cases, both P < 0.05). There was no correlation between imaging parameters and serum AST/ALT with the sham cases excluded (P = 0.673 for f, 0.568 for D, 0.403 for ADC), and good correlation between D, ADC, and serum AST/ALT (r = 0.747 and 0.748, both P < 0.001) with all cases.

Conclusion: IVIM-DWI can quantitatively characterize an animal model of HIRI, with D and ADC sensitive in early detection of cellular injury, as well as fair to good correlation between f, ADC, and microcirculation alteration. J. Magn. Reson. Imaging 2016;43:1327-1336.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.25092DOI Listing

Publication Analysis

Top Keywords

cellular injury
12
imaging parameters
12
serum ast/alt
12
good correlation
12
sham cases
12
cases excluded
12
intravoxel incoherent
8
incoherent motion
8
motion diffusion-weighted
8
diffusion-weighted imaging
8

Similar Publications

Chitinase 3-like protein 1 (CHI3L1) is emerging as a promising biomarker for assessing intracranial lesion burden and predicting prognosis in traumatic brain injury (TBI) patients. Following experimental TBI, Chi3l1 transcripts were detected in reactive astrocytes located within the pericontusional cortex. However, the cellular sources of CHI3L1 in response to hemorrhagic contusions in human brain remain unidentified.

View Article and Find Full Text PDF

lncRNA SNHG6 Knockdown Promotes Microglial M2 Polarization and Alleviates Spinal Cord Injury via Regulating the miR-182-5p/NEUROD4 Axis.

Appl Biochem Biotechnol

January 2025

Department of Neurosurgery, General Medical 300 Hospital, No. 420 Huanghe Road, Guiyang City, 550006, Guizhou Province, China.

Spinal cord injury (SCI) is one of the devastating neurological disorders that leads to a loss of motor and sensory functions. Long non-coding RNA small nucleolar RNA host gene 6 (lncRNA SNHG6) plays a crucial role in inflammatory regulation across various diseases. This study investigates the role of SNHG6 in SCI development and its underlying regulatory mechanisms.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke, and the neuroprotective effects of nimodipine following SAH have been well-documented. Sirtuin 3 (SIRT3), a mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, plays a significant role in mitigating oxidative stress in various neurodegenerative conditions. However, the role of SIRT3 in the neuroprotective mechanisms of nimodipine after SAH remains unclear.

View Article and Find Full Text PDF

Sympathetic nerve signaling rewires the tumor microenvironment: a shift in "microenvironmental-ity".

Cancer Metastasis Rev

January 2025

Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.

Nerve signaling within the tumor microenvironment (TME) plays a critical role in the initiation, progression, and metastasis of solid tumors. Due to their highly responsive behavior and activation upon injury and cancer onset, this review specifically focuses on how sympathetic nerves rewire the TME. Within tumors, sympathetic nerves closely interact with various TME components, and their combined signaling often shifts tumor-intrinsic physiology toward tumor-supportive phenotypes.

View Article and Find Full Text PDF

The treatment of corneal blindness due to corneal diseases and injuries often requires the transplantation of healthy cadaveric corneal endothelial graft tissue to restore corneal clarity and visual function. However, the limited availability of donor corneas poses a significant challenge in meeting the demand for corneal transplantation. As a result, there is a growing interest in developing strategies alleviate this unmet need, and one of the postulated approaches is to isolate and expand primary human corneal endothelial cells (HCECs) for use in cell therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!