Argonaute3 is a key player in miRNA-mediated target cleavage and translational repression in Chlamydomonas.

Plant J

Department of Environmental Systems Engineering, Kochi University of Technology (KUT), 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan.

Published: January 2016

MicroRNAs (miRNAs) play important roles in diverse biological processes in eukaryotes, generally through degradation and/or inhibition of the translation of target mRNAs. MicroRNAs are loaded into Argonaute (AGO) proteins to form the RNA-induced silencing complex (RISC) and used as guides to identify complementary transcripts. The distinct functions and features, such as associated small RNA classes and modes of silencing, of individual AGO paralogs have been well documented in multicellular eukaryotes. However, this aspect of miRNA function remains poorly understood in the unicellular green alga Chlamydomonas reinhardtii, which contains three AGO paralogs. In this study, we isolated AGO2 and AGO3 insertional mutants and confirmed that AGO3 is more abundantly expressed than AGO2. MicroRNA-directed target transcript cleavage and translational repression were impaired in the AGO3 mutant background, indicating that AGO3 can mediate both modes of silencing. In contrast, although the AGO2 mutant is not a null, the involvement of AGO2 in miRNA-directed silencing appears to be more limited. Our results strongly suggest that miRNA-mediated post-transcriptional gene silencing relies primarily on AGO3 in Chlamydomonas.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.13107DOI Listing

Publication Analysis

Top Keywords

cleavage translational
8
translational repression
8
modes silencing
8
ago paralogs
8
silencing
5
ago3
5
argonaute3 key
4
key player
4
player mirna-mediated
4
mirna-mediated target
4

Similar Publications

Reconstruction of a microbial TNT deep degradation system and its mechanism for reshaping microecology.

J Hazard Mater

January 2025

State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China. Electronic address:

This study is the first to use synthetic biological omics technology to analyze the molecular mechanism underlying deep degradation of TNT, to construct an artificial transformation system to create engineered Escherichia coli bacteria, and to use Bacillus subtilis as an expression host to explore the mechanism driving the reshaping of the deep degradation platform on microecology. Nitroreductase family protein, 2-oxoacid:acceptor oxidoreductase, NADPH-cytochrome P450 reductase, monooxygenase, ring-cleaving dioxygenase, and RraA family protein significantly participated in the reduction-hydroxylation-ring opening cleavage of TNT, achieving deep transformation of TNT to produce pyruvic acid and other products that entered the cellular metabolic cycle. The key toxic metabolic pathways of TNT, 2,4-diamino-6-nitrotoluene, 2,4,6-triaminotoluene, and 2,4,6-trihydroxytoluene are pantothenate and CoA biosynthesis.

View Article and Find Full Text PDF

Caspase 3-specific cleavage of ubiquitin-specific peptidase 48 enhances drug-induced apoptosis in AML.

Cancer Biol Ther

December 2025

National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Department of Hematology, Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Dysfunction or dysregulation of deubiquitination is closely related to the initiation and development of multiple cancers. Targeted regulation of deubiquitination has been recognized as an important strategy in tumor therapy. However, the mechanism by which drugs regulate deubiquitinase is not clear.

View Article and Find Full Text PDF

CCN5 suppresses injury-induced vascular restenosis by inhibiting smooth muscle cell proliferation and facilitating endothelial repair via thymosin β4 and Cd9 pathway.

Eur Heart J

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.

Background And Aims: Members of the CCN matricellular protein family are crucial in various biological processes. This study aimed to characterize vascular cell-specific effects of CCN5 on neointimal formation and its role in preventing in-stent restenosis (ISR) after percutaneous coronary intervention (PCI).

Methods: Stent-implanted porcine coronary artery RNA-seq and mouse injury-induced femoral artery neointima single-cell RNA sequencing were performed.

View Article and Find Full Text PDF

Proteases are overexpressed at various stages of conditions such as cancers and thus can serve as biomarkers for disease diagnosis. Electrochemical techniques to detect the activity of extracellular proteases have gained attraction due to their multiplexing capability. Here we employ an electrochemical approach based on a 3 × 3 gold (Au) microelectrode array (MEA) functionalized with (2-aminoethyl)ferrocene (AEF) tagged specific peptide substrates to monitor cathepsin B (CB) protease activity.

View Article and Find Full Text PDF

Role of tRNA-Derived Fragments in Protozoan Parasite Biology.

Cells

January 2025

Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305, USA.

tRNA molecules are among the most fundamental and evolutionarily conserved RNA types, primarily facilitating the translation of genetic information from mRNA into proteins. Beyond their canonical role as adaptor molecules during protein synthesis, tRNAs have evolved to perform additional functions. One such non-canonical role for tRNAs is through the generation of tRNA-derived fragments via specific cleavage processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!