To develop a reactive oxygen species (ROS) sensitive drug carrier, a chondroitin sulfate (CS)-anthocyanin (ATC) based nanocomplex was developed. Doxorubicin hydrochloride (DOX) was loaded in the CS-ATC nanocomplex (CS-ATC-DOX) via intermolecular stacking interaction. The nanocomplex was fabricated by a simple mixing method in the aqueous phase. The morphology and size of CS-ATC-DOX were determined by ATC content. In the group with 1.5mg/ml of ATC loaded CS-ATC-DOX (CS-ATC2-DOX), the drug content and loading efficiency were 8.5% and 99.1%, respectively. The ROS sensitive drug release of CS-ATC2-DOX was confirmed under in vitro physiological conditions. The results demonstrated that 1.67 times higher DOX release occurred in CS-ATC2-DOX for 48h compared to CS-DOX (ATC absent sample). Drug release and nanocomplex destruction were induced by ROS mediated ATC degradation. We determined that 66.7% of ROS was scavenged by CS-ATC2-DOX. Additionally, an HCT-116 tumor bearing animal model was used to confirm ROS sensitive therapeutic effects of CS-ATC2-DOX. The results indicate that DOX was released from the intravenously injected CS-ATC2-DOX in the tumor tissue. Thus, nuclei shrinkage and dead cells were observed in H&E staining and TUNEL assay, respectively. These data suggest that the tumor growth was effectively inhibited. This study means that CS-ATC2-DOX has potential in improving tumor therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2015.12.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!