In this paper improvements to a Near-Field Scanning Microwave Microscope (NSMM) are presented that allow the loss of high loss dielectric materials to be measured accurately at microwave frequencies. This is demonstrated by measuring polar liquids (loss tangent tanδ≈1) for which traceable data is available. The instrument described uses a wire probe that is electromagnetically coupled to a resonant cavity. An optical beam deflection system is incorporated within the instrument to allow contact mode between samples and the probe tip to be obtained. Liquids are contained in a measurement cell with a window of ultrathin glass. The calibration process for the microscope, which is based on image-charge electrostatic models, has been adapted to use the Laplacian 'complex frequency'. Measurements of the loss tangent of polar liquids that are consistent with reference data were obtained following calibration against single-crystal specimens that have very low loss.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2015.11.015DOI Listing

Publication Analysis

Top Keywords

near-field scanning
8
scanning microwave
8
microwave microscope
8
polar liquids
8
loss tangent
8
loss
6
measurement permittivity
4
permittivity loss
4
loss high-loss
4
high-loss materials
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!