Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Even though vast areas contaminated with arsenic (As) are under soybean (Glycine max) cultivation, little is known about the growth and intrinsic antioxidant metabolism of soybean in response to As exposure. Thus, an evaluation was carried out of plant growth, root anatomy, antioxidant system and photosynthetic pigment content under arsenate (As(V)) and arsenite (As(III)) treatment. Soybean seedling growth was significantly affected at 25 μM or higher concentrations of As(V) or As(III), and the toxic effect on root growth was associated with cell death of root tips. Microscopic analysis of cross-sections of As-treated root showed a reduction in the cortex area, dark deposits in cortex cells and broken cells in the outer layer. Similarly, in the vascular cylinder, dark deposits within xylem vessel elements and phloem cell walls were observed. In all the analyzed parameters, the deleterious effect was more evident under As(III) than As(V) treatment. Arsenic-treated soybean seedlings showed increased activity of antioxidant enzymes [total peroxidases (Px) and superoxide dismutase (SOD)] in root and shoot harvested after 2 and 5 d of treatment. However, a reduction in chlorophyll content and an increase in membrane lipids peroxidation were observed. It is suggested that root structural alterations induced by As, such as the particular pattern of dark depositions in the vascular system, could be associated with an adaptation or detoxification mechanism to prevent As translocation to the aboveground tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2015.11.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!