Development of edible films and coatings from alginates and carrageenans.

Carbohydr Polym

Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.

Published: February 2016

The use of renewable resources, which can reduce waste disposal problems, is being explored to produce biopolymer films and coatings. Renewability, degradability, and edibility make such films particularly suitable for food and nonfood packaging applications. Edible films and coatings play an important role in the quality, safety, transportation, storage, and display of a wide range of fresh and processed foods. They can diminish main alteration by avoiding moisture losses and decreasing adverse chemical reaction rates. Also, they can prevent spoilage and microbial contamination of foods. Additionally, nanomaterials and food additives, such as flavors, antimicrobials, antioxidants, and colors, can be incorporated into edible films and coatings in order to extend their applications. Water-soluble hydrocolloids like polysaccharides usually impart better mechanical properties to edible films and coatings than do hydrophobic substances. They also are excellent barriers to oxygen and carbon dioxide. Recently, there has been much attention on carrageenan and alginate as sources of film-forming materials. Thus, this review highlights production and characteristics of these films.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2015.10.074DOI Listing

Publication Analysis

Top Keywords

films coatings
20
edible films
16
films
7
coatings
5
development edible
4
coatings alginates
4
alginates carrageenans
4
carrageenans renewable
4
renewable resources
4
resources reduce
4

Similar Publications

Optically Transparent Carbon Electrodes for Single Entity Electrochemistry.

ACS Electrochem

January 2025

Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.

We demonstrate the application and benefit of optically transparent carbon electrodes (OTCEs) for single entity nanoelectrochemistry. OTCEs are prepared by pyrolyzing thin photoresist films on fused quartz coverslips to create conductive, transparent, thin films. Optical, electrical, topographical, and electrochemical properties of OTCEs are characterized to evaluate their suitability for single entity electrochemistry.

View Article and Find Full Text PDF

The development of chiral organic materials with strong non-reciprocal chiroptical features may have major implications for cutting-edge technological applications. In this work, a new synthesized chiral 1,4-diketo-3,6-dithienylpyrrolo[3,4-]pyrrole dye, bearing two ()-3,7-dimethyl-1-octyl alkyl chains on the lactam moieties and functionalized with two lateral 9-anthracenyl π-conjugated units, exhibited strong non-reciprocal chiroptical properties in thin films, with some important differences between samples prepared by drop casting and spin coating. A detailed study was performed to unravel the intimate structure-property relationship, involving computational analysis, different microscopy techniques and synchrotron radiation Mueller matrix polarimetry imaging (SR-MMP) investigation.

View Article and Find Full Text PDF

Background: The edible seeds of Ocimum gratissimum and Ocimum basilicum were found to be a potent source of phytochemicals with noteworthy antioxidant, antidiabetic, and antimicrobial properties. This study aimed to investigate the impact of germination and extraction solvents (ethanol (EtOH), distilled water) on the therapeutic properties exhibited and the ability of seed extracts to act as natural food preservatives.

Results: The EtOH extracts of germinated O.

View Article and Find Full Text PDF

Lead halide perovskite heterojunctions have been considered as important building blocks for fabricating high-performance photodetectors (PDs). However, the interfacial defects induced non-radiative recombination and interfacial energy-level misalignment induced ineffective carrier transport severely limit the performance of photodetection of resulting devices. Herein, interfacial engineering with a spin-coating procedure has been studied to improve the photodetection performance of CHNHPbI/SnO heterojunction PDs, which were fabricated by sputtering a SnO thin film on ITO glass followed by spin-coating a CHNHPbI thin film.

View Article and Find Full Text PDF

High-refractive-index (HRI) dielectrics are gaining increasing attention as building blocks for compact lasers. Their ability to simultaneously support both electric and magnetic modes provides greater versatility as compared to plasmonic platforms. Moreover, their reduced absorption loss minimizes heat generation, further enhancing their performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!