OBJECT Radioactive phosphorus-32 (P32) has been used as brachytherapy for craniopharyngiomas with the hope of providing local control of enlarging tumor cysts. Brachytherapy has commonly been used as an adjunct to the standard treatment of surgery and external-beam radiation (EBR). Historically, multimodal treatment, including EBR, has shown tumor control rates as high as 70% at 10 years after treatment. However, EBR is associated with significant long-term risks, including visual deficits, endocrine dysfunction, and cognitive decline. Theoretically, brachytherapy may provide focused local radiation that controls or shrinks a symptomatic cyst without exposing the patient to the risks of EBR. For this study, the authors reviewed their experiences with craniopharyngioma patients treated with P32 brachytherapy as the primary treatment without EBR. The authors reviewed these patients' records to evaluate whether this strategy effectively controls tumor growth, thus avoiding the need for further surgery or EBR. METHODS The authors performed a retrospective review of pediatric patients treated for craniopharyngioma between 1997 and 2004. This was the time period during which the authors' institution had a relatively high use of P32 for treatment of cystic craniopharyngioma. All patients who had surgery and injection of P32 without EBR were identified. The patient records were analyzed for complications, cyst control, need for further surgery, and need for future EBR. RESULTS Thirty-eight patients were treated for craniopharyngioma during the study period. Nine patients (23.7%) were identified who had surgery (resection or biopsy) with P32 brachytherapy but without initial EBR. These 9 patients represented the study group. For 1 patient (11.1%), there was a complication with the brachytherapy procedure. Five patients (55.5%) required subsequent surgery. Seven patients (77.7%) required subsequent EBR for tumor growth. The mean time between the injection of P32 and subsequent treatment was 1.67 ± 1.50 years (mean ± SD). CONCLUSIONS In this small but focused population, P32 treatment provided limited local control for cyst growth. Brachytherapy alone did not reliably avert the need for subsequent surgery or EBR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2015.8.PEDS15317 | DOI Listing |
Appl Radiat Isot
February 2024
Faculty of Medicine, Bern University, Bern, Switzerland.
Brachytherapy of superficial skin tumors using beta-emitting sources is a method that has been investigated by some researchers in both simulation and experimental studies with promising results. In the current study, the effect of geometrical parameters of some relevant radionuclides including Y-90, Re-188, P-32, and Ho-166 on the depth dose distribution in skin tissue has been investigated through Monte Carlo simulation. MCNPX Monte Carlo code was employed to model the above-mentioned patch sources in cylindrical format and then the effect of patch geometrical parameters including the source-to-skin distance (SSD), patch thickness, and patch diameter on depth dose distribution was assessed through modeling and calculation of the dose inside a cubic phantom mimicking the skin tissue.
View Article and Find Full Text PDFJ Biomed Phys Eng
October 2023
Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
Background: Percutaneous vertebroplasty employs bone cement for injecting into the fractured vertebral body (VB) caused by spinal metastases. Radioactive bone cement and also brachytherapy seeds have been utilized to suppress the tumor growth in the VB.
Objective: This study aims to investigate the dose distributions of low-energy brachytherapy seeds, and to compare them to those of radioactive bone cement, by Monte Carlo simulation.
J Cancer Res Clin Oncol
August 2023
Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Vertebroplasty is a minimally invasive outpatient procedure to stabilize compression fractures in the spine. This procedure involves injecting bone cement into the vertebrae that have been cracked or broken, typically due to osteoporosis. The cement hardens inside the bones, providing stability to the fractures and supporting the spine.
View Article and Find Full Text PDFAppl Radiat Isot
December 2021
Laboratório de Produção de Fontes para Radioterapia, Instituto de Pesquisas Energéticas e Nucleares (IPEN / CNEN - SP), Universidade de São Paulo, Av. Professor Lineu Prestes 2242, 05508-000, São Paulo, SP, Brazil. Electronic address:
The present work described the cold fabrication of a P-32 radioactive source to be used in CNS cancer using epoxy resin. The epoxy plaque fabricated with Teflon mold presented better agreement. MCNP simulation evaluated the radiation dose.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
November 2021
Department of Radiation Oncology, Geisinger Health Care, Danville, Pennsylvania; Division of Neurosurgery, McMaster University and Hamilton General Hospital, Hamilton, Ontario, Canada. Electronic address:
Purpose: Interstitial brachytherapy based on phosphorus-32 (P-32) has an established role as a minimally invasive treatment modality for patients with cystic craniopharyngioma. However, reporting on long-term outcomes with toxicity profiles for large cohorts is lacking in the literature. The purpose of this study is therefore to evaluate the long-term visual, endocrinal, and neurocognitive functions in what is the largest patient series having received this treatment to date.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!