During microRNA (miRNA) biogenesis, the Microprocessor complex (MC), composed minimally of Drosha, an RNaseIII enzyme, and DGCR8, a double-stranded RNA-binding protein, cleaves the primary-miRNA (pri-miRNA) to release the pre-miRNA stem-loop structure. Size-exclusion chromatography of the MC, isolated from mammalian cells, suggested multiple copies of one or both proteins in the complex. However, the exact stoichiometry was unknown. Initial experiments suggested that DGCR8 bound pri-miRNA substrates specifically, and given that Drosha could not be bound or cross-linked to RNA, a sequential model for binding was established in which DGCR8 bound first and recruited Drosha. Therefore, many laboratories have studied DGCR8 binding to RNA in the absence of Drosha and have shown that deletion constructs of DGCR8 can multimerize in the presence of RNA. More recently, it was demonstrated that Drosha can bind pri-miRNA substrates in the absence of DGCR8, casting doubt on the sequential model of binding. In the same study, using a single-molecule photobleaching assay, fluorescent protein-tagged deletion constructs of DGCR8 and Drosha assembled into a heterotrimeric complex on RNA, comprising two DGCR8 molecules and one Drosha molecule. To determine the stoichiometry of Drosha and DGCR8 within the MC in the absence of added RNA, we also used a single-molecule photobleaching assay and confirmed the heterotrimeric model of the human MC. We demonstrate that a heterotrimeric complex is likely preformed in the absence of RNA and exists even when full-length proteins are expressed and purified from human cells, and when hAGT-derived tags are used rather than fluorescent proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712668 | PMC |
http://dx.doi.org/10.1261/rna.054684.115 | DOI Listing |
Nat Rev Mol Cell Biol
December 2024
Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
MicroRNAs (miRNAs) are small, yet profoundly influential, non-coding RNAs that base-pair with mRNAs to induce RNA silencing. Although the basic principles of miRNA biogenesis and function have been established, recent breakthroughs have yielded important new insights into the molecular mechanisms of miRNA biogenesis. In this Review, we discuss the metazoan miRNA biogenesis pathway step-by-step, focusing on the key biogenesis machinery, including the Drosha-DGCR8 complex (Microprocessor), exportin-5, Dicer and Argonaute.
View Article and Find Full Text PDFMicroPubl Biol
November 2024
Pharmacology, University of South Alabama College of Medicine, Mobile, AL.
The excision of specific tRNA-derived small RNAs (tsRNAs), yRNA-derived small RNAs (ysRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) is now well established. Several reports have suggested many of these fragments function much like traditional microRNAs (miRNAs). That said, whereas the expressions of the majority of appreciably expressed miRNAs in HCT116 colon cancer cells are significantly decreased in individual knockouts (KOs) of DROSHA, DGCR8, XPO5, and DICER, on average, only 3.
View Article and Find Full Text PDFBioinform Biol Insights
November 2024
Federal Research Center of Fundamental and Translational Medicine, Laboratory of molecular mechanisms of carcinogenesis, Novosibirsk, Russia.
MicroRNAs play a significant role in the development of cancers, including lung cancer. A recent study revealed that smoking, a key risk factor for lung cancer, increased the levels of hsa-mir-301a in the tumor tissues of patients with lung squamous cell carcinoma (LUSC). The aim of the current study is to investigate the mechanism by which tobacco smoke increases hsa-mir-301a levels in LUSC tumor tissues using bioinformatics analysis.
View Article and Find Full Text PDFIn recent years, germline mutations in the microRNA (miRNA) processor genes DICER1 and DGCR8 have been coupled to the development of thyroid follicular nodular disease (TFND), thereby casting new light on the etiology of this enigmatic, benign condition in non-iodine-deficient regions. Moreover, DICER1 and DGCR8 mutations have also been reported in rare subsets of follicular cell-derived thyroid carcinomas. Specifically, truncating germline or missense somatic DICER1 mutations have been reported in small subsets of pediatric and adolescent follicular thyroid carcinoma (FTC) and poorly differentiated thyroid carcinoma (PDTC).
View Article and Find Full Text PDFSci Rep
November 2024
Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!