Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle.

Microvasc Res

Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.

Published: May 2016

Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829340PMC
http://dx.doi.org/10.1016/j.mvr.2015.12.007DOI Listing

Publication Analysis

Top Keywords

oxygen consumption
12
microvascular oxygen
12
oxygen delivery
8
oxygen
7
simultaneous sampling
4
sampling tissue
4
tissue oxygenation
4
oxygenation oxygen
4
consumption skeletal
4
skeletal muscle
4

Similar Publications

Cardiac sex-difference functional studies have centred on measurements of twitch force and Ca dynamics. The energy expenditures from these two cellular processes: activation (Ca handling) and contraction (cross-bridge cycling), have not been assessed, and compared, between sexes. Whole-heart studies measuring oxygen consumption do not directly measure the energy expenditure of these activation-contraction processes.

View Article and Find Full Text PDF

Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.

View Article and Find Full Text PDF

Hypoxic tumors are radioresistant stemming from the fact that oxygen promotes reactive oxygen species (ROS) propagation after water radiolysis and stabilizes irradiation-induced DNA damage. Therefore, an attractive strategy to radiosensitize solid tumors is to increase tumor oxygenation at the time of irradiation, ideally above a partial pressure of 10 mm-Hg at which full radiosensitization can be reached. Historically, the many attempts to increase vascular O delivery have had limited efficacy, but mathematical models predicted that inhibiting cancer cell respiration would be more effective.

View Article and Find Full Text PDF

Right ventricular reserve in cardiopulmonary disease: a simultaneous hemodynamic and three-dimensional echocardiographic study.

J Heart Lung Transplant

December 2024

Department of Cardiology, Ospedale San Luca IRCCS Istituto Auxologico Italiano, Milano, Italy; Department of Management, Information and Production Engineering, University of Bergamo, Dalmine (BG), Italy.

Background: RV reserve has been linked to exercise capacity and prognosis in cardiopulmonary diseases. However, evidence in this setting is limited, due to the complex shape and load dependency of the RV. We sought to study right ventricular (RV) adaptation to exercise by simultaneous three-dimensional echocardiography (3DE) and right heart catheterization (RHC).

View Article and Find Full Text PDF

Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancer.

Redox Biol

December 2024

Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland.

The increase in early-stage cancers, particularly gastrointestinal, breast and kidney cancers, has been linked to lifestyle changes such as consumption of processed foods and physical inactivity, which contribute to obesity and diabetes - major cancer risk factors. Conventional treatments such as chemotherapy and radiation often lead to severe long-term side effects, including secondary cancers and tissue damage, highlighting the need for new, safer and more effective therapies, especially for young patients. Weak electromagnetic fields (WEMF) offer a promising non-invasive approach to cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!