A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impacts of Climate Change on the Timing of the Production Season of Maple Syrup in Eastern Canada. | LitMetric

Impacts of Climate Change on the Timing of the Production Season of Maple Syrup in Eastern Canada.

PLoS One

Direction de la recherche forestière, Ministère des Forêts de la Faune et des Parcs du Québec, 2700 Einstein, Québec, QC G1P 3W8, Canada.

Published: June 2016

Maple syrup production is an important economic activity in north-eastern North-America. The beginning and length of the production season is linked to daily variation in temperature. There are increasing concerns about the potential impact of climatic change on this industry. Here, we used weekly data of syrup yield for the 1999-2011 period from 121 maple stands in 11 regions of Québec (Canada) to predict how the period of production may be impacted by climate warming. The date at which the production begins is highly variable between years with an average range of 36 days among the regions. However, the average start date for a given region, which ranged from Julian day 65 to 83, was highly predictable (r2 = 0.88) using the average temperature from January to April (TJ-A). A logistic model predicting the weekly presence or absence of production was also developed. Using the inputs of 77 future climate scenarios issued from global models, projections of future production timing were made based on average TJ-A and on the logistic model. The projections of both approaches were in very good agreement and suggest that the sap season will be displaced to occur 15-19 days earlier on average in the 2080-2100 period. The data also show that the displacement in time will not be accompanied by a greater between years variability in the beginning of the season. However, in the southern part of Québec, very short periods of syrup production due to unfavourable conditions in the spring will occur more frequently in the future although their absolute frequencies will remain low.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684277PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144844PLOS

Publication Analysis

Top Keywords

production
8
production season
8
maple syrup
8
syrup production
8
tj-a logistic
8
logistic model
8
average
5
impacts climate
4
climate change
4
change timing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!