Metal-Free Chemoselective Oxidative Dehomologation or Direct Oxidation of Alcohols: Implication for Biomass Conversion.

ChemSusChem

Department of Energy Science, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Korea.

Published: February 2016

A transition metal-free, chemoselective reaction was performed using the sodium tert-butoxide-oxygen (NaO(t) Bu-O2 ) system, resulting in either oxidative dehomologation or direct oxidation of alcohols. In particular, the newly developed protocol may be used to predict the major product formed, which depends on alkyl chain length of the alcohols and reaction conditions. The rational mechanism of this transformation was also demonstrated by performing an (18) O isotopic labelling experiment. This protocol presents a straightforward method for biomass conversion of a lignin model compound to phenol and benzoic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201501359DOI Listing

Publication Analysis

Top Keywords

metal-free chemoselective
8
oxidative dehomologation
8
dehomologation direct
8
direct oxidation
8
oxidation alcohols
8
biomass conversion
8
chemoselective oxidative
4
alcohols implication
4
implication biomass
4
conversion transition
4

Similar Publications

In this study, a metal-free and efficient method for the synthesis of sulfilimines and -sulfanylanilines in high yields with excellent chemoselectivities from oxonium aryne precursors with sulfenamides has been developed. This method features mild reaction conditions, simple operations, a general substrate scope, and good tolerance of functional groups. In addition, scale-up synthesis, related applications, and preliminary mechanistic explorations were also investigated.

View Article and Find Full Text PDF

Temperature-Controlled Chemoselective Couplings of Alkyl Halides with Disulfides.

J Org Chem

December 2024

College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.

An unprecedented, transition metal-free -alkylation of disulfides with alkyl halides is developed for the first time, providing an efficient and green synthesis of thioethers and even thioesters. Notably, this new method allows the full utilization of both sulfur atoms of disulfides under chemical reductant-free conditions and can be easily scaled up in gram scale, showing good practical value. Control experiments suggested that water, unprecedentedly, serves as the terminal reductant of the whole reaction.

View Article and Find Full Text PDF

Triflic Acid-Mediated Chemoselective Indole C2-Heteroarylation of Peptide Tryptophan Residues by Triazine.

Org Lett

December 2024

Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China.

Article Synopsis
  • Peptide modification allows for the creation of peptides with specific functions, and tryptophan is a prime candidate due to its unique chemical properties.* -
  • The study presents a new method for modifying tryptophan and indole derivatives without using transition metals, utilizing triazine derivatives activated by triflic acid.* -
  • The new functional group introduced can be used for further chemical reactions, specifically an inverse electron demand Diels-Alder reaction, enabling additional bioconjugation opportunities.*
View Article and Find Full Text PDF

Feedstock chemical dichloromethane as the C1 source for the chemoselective multicomponent synthesis of valuable 1,4,2-dioxazoles.

Commun Chem

November 2024

College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.

The development of mild and practical strategies to produce value-added fine chemicals directly from inexpensive and readily available commodity chemicals is actively pursued by chemists. However, the application of feedstock chemical dichloromethane (DCM) as the C1 source in organic synthesis is still in its infancy. Herein, we describe a multicomponent strategy for the chemoselective synthesis of valuable 1,4,2-dioxazoles by using DCM as a C1 source.

View Article and Find Full Text PDF

Brook-Oxidation Reaction of Acylsilanes: General Access to α-Ketoamides and α-Ketothioamides.

Org Lett

November 2024

Key Laboratory of Green and Precise Synthetic Chemistry and Application, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.

A novel chemoselective Brook-oxidation reaction of acylsilanes initiated by the carbamoyl anion has been successfully developed for the first time. This method enables the synthesis of diverse α-ketoamides and α-ketothioamides under transition metal-free and strong oxidant-free conditions with high yields and high chemoselectivity. It also demonstrates tolerance toward a wide range of functional groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!