Ab initio study of the enantio-selective magnetic-field-induced second harmonic generation in chiral molecules.

Phys Chem Chem Phys

Consiglio Nazionale delle Ricerche - CNR, Istituto per i Processi Chimico-Fisici, UoS di Pisa, Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy.

Published: January 2016

We present a systematic ab initio study of enantio-selective magnetic-field-induced second harmonic generation (MFISHG) on a set of chiral systems ((l)-alanine, (l)-arginine and (l)-cysteine; 3,4-dehydro-(l)-proline; (S)-α-phellandrene; (R,S)- and (S,S)-cystine disulphide; N-(4-nitrophenyl)-(S)-prolinol, N-(4-(2-nitrovinyl)-phenyl)-(S)-prolinol, N-(4-tricyanovinyl-phenyl)-(S)-prolinol, (R)-BINOL, (S)-BINAM and 6-(M)-helicene). The needed electronic frequency dependent cubic response calculations are performed within a density functional theory (DFT) approach. A study of the dependence of the property on the choice of electron correlation, on one-electron basis set extension and on the choice of magnetic gauge origin is carried out on a prototype system (twisted oxygen peroxide). The magnetic gauge dependence analysis is extended also to the molecules of the set. An attempt to analyze the structure-property relationships is also made, based on the results obtained for biphenyl (in a frozen twisted conformation), for prolinol and for some of their derivatives. The strength of the effect is discussed, in order to establish its measurability with a proposed experimental setup.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp07127eDOI Listing

Publication Analysis

Top Keywords

initio study
8
study enantio-selective
8
enantio-selective magnetic-field-induced
8
magnetic-field-induced second
8
second harmonic
8
harmonic generation
8
magnetic gauge
8
generation chiral
4
chiral molecules
4
molecules systematic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!