A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Concise gene signature for point-of-care classification of tuberculosis. | LitMetric

There is an urgent need for new tools to combat the ongoing tuberculosis (TB) pandemic. Gene expression profiles based on blood signatures have proved useful in identifying genes that enable classification of TB patients, but have thus far been complex. Using real-time PCR analysis, we evaluated the expression profiles from a large panel of genes in TB patients and healthy individuals in an Indian cohort. Classification models were built and validated for their capacity to discriminate samples from TB patients and controls within this cohort and on external independent gene expression datasets. A combination of only four genes distinguished TB patients from healthy individuals in both cross-validations and on separate validation datasets with very high accuracy. An external validation on two distinct cohorts using a real-time PCR setting confirmed the predictive power of this 4-gene tool reaching sensitivity scores of 88% with a specificity of around 75%. Moreover, this gene signature demonstrated good classification power in HIV(+) populations and also between TB and several other pulmonary diseases. Here we present proof of concept that our 4-gene signature and the top classifier genes from our models provide excellent candidates for the development of molecular point-of-care TB diagnosis in endemic areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4734838PMC
http://dx.doi.org/10.15252/emmm.201505790DOI Listing

Publication Analysis

Top Keywords

gene signature
8
gene expression
8
expression profiles
8
real-time pcr
8
patients healthy
8
healthy individuals
8
concise gene
4
signature point-of-care
4
classification
4
point-of-care classification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!