The biosynthesis of silver nanoparticles (AgNPs) was achieved for the first time using methanol leaf extract of C. didymobotyra and their in vitro antioxidant and antibacterial activities were also evaluated. Methanol leaf extracts of C. didymobotyra after mixing with AgNO3 solution showed the change in color from light brown to dark yellowish brown within 1 hour. UV-visible spectroscopy study showed the surface plasmon resonance at around 420 nm clearly indicating the biosynthesis of AgNPs. Transmission Electron Microscopy (TEM) analysis proved the presence of biosynthesized AgNPs in spherical shape with huge disparity in sizes. The average size of biosynthesized nanoparticle was about 18 nm. The occurrence of face centered cubic shapes of nanoparticles was established by X-ray diffraction (XRD) patterns. Further, Fourier transform infrared spectroscopy (FTIR) study showed the possible capping of AgNPs because of the active biomolecules present in the methanol leaf extract of C. didymobotyra. The antioxidant activities of biosynthesized AgNPs were evaluated by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging assay and found that AgNPs demonstrated a strong antioxidant properties compared to methanol leaf extract. Nevertheless, the biosynthesized AgNPs exhibited a strong antibacterial activity against all the tested human pathogenic bacterial strains compared to crude methanol leaf extract of C. didymobotyra. Thus, it is concluded that these biosynthesized AgNPs are cost effective, eco-friendly in nature and could be applied for developing new antibacterial drugs and other biomedical applications in near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.10966 | DOI Listing |
J Oleo Sci
January 2025
Çumra Vocational School, Department of Medicinal and Aromatic Plants, Selcuk University.
Aquilaria agallocha is an economically valuable plant facing endangerment, sought after globally for its production of agarwood. A. agallocha tree possesses medicinal and aromatic properties in its fruits, branches, leaves, wood, and roots, which are being studied for their effective compounds and their potential bioactive effects on human health.
View Article and Find Full Text PDFNat Prod Res
January 2025
Department of Botany, D.B.S. (PG) College, Dehradun, Uttarakhand, India.
The aim of the present study was to demonstrate the phytochemical characterisation, antioxidant and antimicrobial properties of methanol extracts of leaf parts of . The Phytochemical characterisation by GC-MS analysis revealed the presence of 30 phytoconstituents such as Methyl commate A (14.69%), Phytol (13.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, MG, Brazil.
Background: , a notable plant species, has garnered interest for its medicinal properties, including anti-inflammatory, antibacterial and antiviral effects. A vaccine for Chikungunia virus is still under evaluation and no specific antiviral drug has been licensed to date.
Objective: The work investigated antiviral activity of ethyl acetate (EAEF) and methanolic (EMF) extracts from leaves in mammalian cells exposed to (CHIKV).
Chem Biodivers
January 2025
Department of Agricultural Chemistry & Biochemistry, The University of Agriculture, Peshawar, Pakistan.
The medicinal value of plants depends on minerals and nutrients and their complexation with chemotherapeutic compounds. The present study aimed to evaluate the phytochemical composition with anti-inflammatory and antidiarrheal potential of Heliotropium rariflorum. Among nutrients, fibers were maximum (25.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Green synthesis of nanoparticles (NPs) is preferred for its affordability and environmentally friendly approach. This study explored the synthesis and characterization of silver NPs (AgNPs) and examined their impact on the growth of Zea mays, both alone and in combination with nickel chloride (NiCl). A methanolic leaf extract was combined with silver nitrate to synthesize AgNPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!