Alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae was covalently attached, via glutaraldehyde, to magnetite nanoparticles (MagNP) previously coated with aminopropyltriethoxysilane (MagNP/APTS), or with a silica shell followed by the APTS coating (MagNP@SiO2/APTS). In both cases, a great improvement of enzymatic activity has been observed for the ethanol-acetaldehyde conversion. The MagNP@SiO2/APTS-ADH system exhibited the best stability with respect to pH and temperature. Its residual activity after 10 successive recovery cycles and 24 h storage, was maintained around 80% in comparison with 20% for the MagNP/APTS system, and a null activity for free ADH. Luminescence measurements for the immobilized enzyme indicated the occurrence of conformational changes on ADH, contributing for its improved catalytic performance.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2015.10317DOI Listing

Publication Analysis

Top Keywords

alcohol dehydrogenase
8
association yeast
4
yeast alcohol
4
dehydrogenase superparamagnetic
4
superparamagnetic nanoparticles
4
nanoparticles improving
4
improving enzyme
4
enzyme stability
4
stability performance
4
performance alcohol
4

Similar Publications

With the rapid advancement of proteomics, numerous scholars have investigated the intricate relationships between plasma proteins and various diseases. Therefore, this study aims to elucidate the relationship between BDH1 and type 2 diabetes using Mendelian randomization (MR) and to identify novel targets for the prevention and treatment of type 2 diabetes through proteomics. This study primarily employed the Mendelian Randomization (MR) method, leveraging genetic data from numerous large-scale, publicly accessible genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.

View Article and Find Full Text PDF

Dansyl labeling is a widely used approach for enhancing the detection of small molecules by UV spectroscopy and mass spectrometry. It has been successfully applied to identify and quantify a variety of biological and environmental specimens. Despite clear advantages, the dansylation reaction has found very few applications in the study of proteins.

View Article and Find Full Text PDF

Short-Time High-Oxygen Pre-Treatment Delays Lignification of Loquat ( Lindl.) During Low-Temperature Storage.

Foods

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.

Lignification often occurs during low-temperature storage in loquat fruit, leading to increased firmness and lignin content, water loss, and changes in flavor. As induced stress factors, short-time high-oxygen pre-treatment (SHOP) can initiate resistant metabolism and regulate the physicochemical qualities during fresh fruit storage. However, the effect of SHOP on the lignification and quality of loquat has been reported less.

View Article and Find Full Text PDF

Potential Mechanisms and Effects of Dai Bai Jie Ethanol Extract in Preventing Acute Alcoholic Liver Injury.

Curr Issues Mol Biol

December 2024

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.

This study investigated the protective effect of Dai Bai Jie (DBJ) extract against acute alcoholic liver injury (AALI) and elucidated its potential mechanism. The total saponin level in the DBJ extracts was measured using vanillin-chloroform acid colorimetry. To observe the preventive and protective effects of DBJ on AML-12 cells in an ethanol environment, the effective components of DBJ were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!