Despite the wealth of information regarding genetics of the causative parasite and experimental immunology of the cutaneous leishmaniasis, there is currently no licensed vaccine against it. In the current study, a two-level data mining strategy was employed, to screen the Leishmania major genome for promising vaccine candidates. First, we screened a set of 25 potential antigens from 8312 protein coding sequences, based on presence of signal peptides, GPI anchors, and consensus antigenicity predictions. Second, we conducted a comprehensive immunogenic analysis of the 25 antigens based on epitopes predicted by NetCTL tool. Interestingly, results revealed that candidate antigen number 1 (LmjF.03.0550) had greater number of potential T cell epitopes, as compared to five well-characterized control antigens (CSP-Plasmodium falciparum, M1 and NP-Influenza A virus, core protein-Hepatitis B virus, and PSTA1-Mycobacterium tuberculosis). In order to determine an optimal set of epitopes among the highest scoring predicted epitopes, the OptiTope tool was employed for populations susceptible to cutaneous leishmaniasis. The epitope (127SLWSLLAGV) from antigen number 1, found to bind with the most prevalent allele HLA-A⁎0201 (25% frequency in Southwest Asia), was predicted as most immunogenic for all the target populations. Thus, our study reasserts the potential of genome-wide screening of pathogen antigens and epitopes, for identification of promising vaccine candidates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670862 | PMC |
http://dx.doi.org/10.1155/2015/709216 | DOI Listing |
ACS Nano
January 2025
Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China.
Immunogenic cell death (ICD) of tumor cells, which is characterized by releasing immunostimulatory "find me" and "eat me" signals, expressing proinflammatory cytokines and providing personalized and broad-spectrum tumor antigens draws increasing attention in developing a tumor vaccine. In this study, we aimed to investigate whether the influenza virus (IAV) is efficient enough to induce ICD in tumor cells and an extra modification of IAV components such as hemeagglutinin (HA) will be helpful for the ICD-induced cells to elicit robust antitumor effects; in addition, to evaluate whether the membrane-engineering polylactic coglycolic acid nanoparticles (PLGA NPs) simulating ICD immune stimulation mechanisms hold the potential to be a promising vaccine candidate, a mouse melanoma cell line (B16-F10 cell) was infected with IAV rescued by the reverse genetic system, and the prepared cells and membrane-modified PLGA NPs were used separately to immunize the melanoma-bearing mice. IAV-infected tumor cells exhibit dying status, releasing high mobility group box-1 (HMGB1) and adenosine triphosphate (ATP), and exposing calreticulin (CRT), IAV hemeagglutinin (HA), and tumor antigens like tyrosinase-related protein 2 (TRP2).
View Article and Find Full Text PDFNPJ Vaccines
January 2025
Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
Dysentery caused by Shigella species remains a major health threat to children in low- and middle-income countries. There is no vaccine available. The most advanced candidates, i.
View Article and Find Full Text PDFSci Rep
January 2025
The Jenner Institute, University of Oxford, Oxford, UK.
BCG remains the only licensed vaccine for tuberculosis (TB), but its efficacy wanes over time. Subunit vaccines, aim to improve BCG immunity and protection, by inducing responses to a few mycobacterial antigens delivered with a specific platform. Since the platform shapes the immune response induced, selecting the right platform has been challenging due to the lack of immune correlates of protection.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN; Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN. Electronic address:
Background: Human monoclonal IgE antibodies recognizing peanut allergens have recently become available, but we lack a detailed understanding of how these IgEs target allergens.
Objective: To determine the molecular details of the antibody-allergen interaction for a panel of clinically important human IgE monoclonal antibodies and to develop strategies to disrupt disease causing antibody-allergen interactions.
Methods: We identified candidates from a panel of epitope binned human IgE monoclonals that recognize two important and homologous peanut allergens, Ara h 2 and Ara h 6.
Lancet Microbe
December 2024
Jenner Institute, University of Oxford-NIHR Oxford Biomedical Research Centre, Oxford, UK. Electronic address:
Background: Malaria remains a substantial public health burden among young children in sub-Saharan Africa and a highly efficacious vaccine eliciting a durable immune response would be a useful tool for controlling malaria. R21 is a malaria vaccine comprising nanoparticles, formed from a circumsporozoite protein and hepatitis B surface antigen (HBsAg) fusion protein, without any unfused HBsAg, and is administered with the saponin-based Matrix-M adjuvant. This study aimed to assess the safety and immunogenicity of the malaria vaccine candidate, R21, administered with or without adjuvant Matrix-M in adults naïve to malaria infection and in healthy adults from malaria endemic areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!