Change-point models are widely used by statisticians to model drastic changes in the pattern of observed data. Least squares/maximum likelihood based estimation of change-points leads to curious asymptotic phenomena. When the change-point model is correctly specified, such estimates generally converge at a fast rate () and are asymptotically described by minimizers of a jump process. Under complete mis-specification by a smooth curve, i.e. when a change-point model is fitted to data described by a smooth curve, the rate of convergence slows down to and the limit distribution changes to that of the minimizer of a continuous Gaussian process. In this paper we provide a bridge between these two extreme scenarios by studying the limit behavior of change-point estimates under varying degrees of model mis-specification by smooth curves, which can be viewed as local alternatives. We find that the limiting regime depends on how quickly the alternatives approach a change-point model. We unravel a family of 'intermediate' limits that can transition, at least qualitatively, to the limits in the two extreme scenarios. The theoretical results are illustrated via a set of carefully designed simulations. We also demonstrate how inference for the change-point parameter can be performed in absence of knowledge of the underlying scenario by resorting to subsampling techniques that involve estimation of the convergence rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678008PMC
http://dx.doi.org/10.1214/15-AOS1362DOI Listing

Publication Analysis

Top Keywords

change-point model
12
change-point models
8
varying degrees
8
mis-specification smooth
8
smooth curve
8
extreme scenarios
8
change-point
6
model
5
asymptotics change-point
4
models varying
4

Similar Publications

Supply chain risk transmission monitoring based on graphic evaluation and review technique.

Heliyon

January 2025

Supply Chain Management, The York Management School, University of York, YO10 5DD, UK.

In the supply chain context, risk events can accumulate, amplify, and mutate as they spread through the supply chain network structure. This can lead to significant losses for supply chains and global businesses. Therefore, monitoring supply chain risk is crucial to ensure the smooth operation of the supply chain.

View Article and Find Full Text PDF

Maintaining homeostasis, the regulation of internal physiological parameters, is essential for health and well-being. Deviations from optimal levels, or 'sweet spots,' can lead to health deterioration and disease. Identifying biomarkers with sweet spots requires both change-point detection and variance effect analysis.

View Article and Find Full Text PDF

Pharmacogenomics stands as a pivotal driver toward personalized medicine, aiming to optimize drug efficacy while minimizing adverse effects by uncovering the impact of genetic variations on inter-individual outcome variability. Despite its promise, the intricate landscape of drug metabolism introduces complexity, where the correlation between drug response and genes can be shaped by numerous nongenetic factors, often exhibiting heterogeneity across diverse subpopulations. This challenge is particularly pronounced in datasets such as the International Warfarin Pharmacogenetic Consortium (IWPC), which encompasses diverse patient information from multiple nations.

View Article and Find Full Text PDF

Background: The ovarian cancer (OC) preclinical detectable phase (PCDP), defined as the interval during which cancer is detectable prior to clinical diagnosis, remains poorly characterised. We report exploratory analyses from the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS).

Methods: In UKCTOCS between Apr-2001 and Sep-2005, 101,314 postmenopausal women were randomised to no screening (NS) and 50,625 to annual multimodal screening (MMS) (until Dec-2011) using serum CA-125 interpreted by the Risk of Ovarian Cancer Algorithm (ROCA).

View Article and Find Full Text PDF

Background: Limited information is available regarding the changes in blood culture utilization following the COVID-19 pandemic. Blood culture utilization rate is a critical indicator of diagnostic efficiency for infectious diseases. This study aims to describe the impact of the COVID-19 pandemic on blood culture utilization rate in Shanghai.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!