An all-inorganic polyoxometalate-polyoxocation chemical garden.

Chem Commun (Camb)

WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.

Published: January 2016

Herein, we show it is possible to produce wholly inorganic chemical gardens from a cationic polyoxometalate (POM) seed in an anionic POM solution, demonstrating a wholly POM-based chemical garden system that produces architectures over a wide concentration range. Six concentration dependent growth regimes have been discovered and characterized: clouds, membranes, slugs, tubes, jetting and budding.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cc09536kDOI Listing

Publication Analysis

Top Keywords

chemical garden
8
all-inorganic polyoxometalate-polyoxocation
4
polyoxometalate-polyoxocation chemical
4
garden produce
4
produce wholly
4
wholly inorganic
4
inorganic chemical
4
chemical gardens
4
gardens cationic
4
cationic polyoxometalate
4

Similar Publications

Glufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.

View Article and Find Full Text PDF

Introduction: Datura stramonium (DS) possesses strong medicinal and therapeutic potential but has been rarely evaluated in this context.

Methods: The present study was intended to evaluate the antioxidant, hepatoprotective, and nephroprotective potential of the crude methanolic leaf extract and ethyl acetate, chloroform, n-hexane, and aqueous fractions of DS in paracetamol-intoxicated rabbits. Paracetamol (2 g/Kg BW) was applied to induce liver and kidney injury in rabbits while the methanolic extract and fractions of DS were applied in the dose range of 150 mg/Kg to 300 mg/Kg body weight for 21 days.

View Article and Find Full Text PDF

The molecular mechanism of transforming red light signal to (E)-β-caryophyllene biosynthesis in Arabidopsis.

Physiol Plant

January 2025

Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, China.

It is known that red light irradiation enhances the biosynthesis of (E)-β-caryophyllene in plants. However, the underlying mechanism connecting red light to (E)-β-caryophyllene biosynthesis remains elusive. This study reveals a molecular cascade involving the phyB-PIF4-MYC2 module, which regulates (E)-β-caryophyllene biosynthesis in response to the red light signal in Arabidopsis thaliana.

View Article and Find Full Text PDF

Application of predictive modeling tools for the identification of Ocimum spp. herbal products.

Anal Bioanal Chem

January 2025

Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA.

Species identification of botanical products is a crucial aspect of research and regulatory compliance; however, botanical classification can be difficult, especially for morphologically similar species with overlapping genetic and metabolomic markers, like those in the genus Ocimum. Untargeted LC-MS metabolomics coupled with multivariate predictive modeling provides a potential avenue for improving herbal identity investigations, but the current dearth of reference materials for many botanicals limits the applicability of these approaches. This study investigated the potential of using greenhouse-grown authentic Ocimum to build predictive models for classifying commercially available Ocimum products.

View Article and Find Full Text PDF

How urban proximity shapes agricultural pest dynamics: a review.

Pest Manag Sci

January 2025

Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel.

Agricultural landscapes adjacent to human settlements are subject to unique ecological dynamics that influence pest populations, yet the complexity of these relationships remains relatively underexplored. This review synthesizes current knowledge on the impacts of urban proximity on agricultural plant pathogen pest dynamics, focusing on spatial distribution patterns, theoretical frameworks from landscape ecology, and the specific mechanisms driving these interactions. The urban heat island effect, habitat fragmentation, and human activities contribute to altered microclimates, reduced natural predator populations, and increased pest proliferation near settlements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!