Protein synthesis in eukaryotes is subject to stringent control. The misregulation of translation of certain mRNAs is often a hallmark of many diseases, including malignancies and autoimmune disorders. To understand why and how it happens, it is important to investigate the translational control of specific mRNAs. In this case, one could use reporter mRNAs in order to identify cis-acting elements responsible for regulation. Here we overview plasmid DNA (pDNA) and mRNA transfections, their pitfalls and limitations, as well as some emerging applications for mRNA transfection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2015.12.008DOI Listing

Publication Analysis

Top Keywords

pdna mrna
8
mrna transfection
8
pros cons
4
cons pdna
4
mrna
4
transfection study
4
study mrna
4
mrna translation
4
translation mammalian
4
mammalian cells
4

Similar Publications

Leveraging Next-Generation Sequencing Application from Identity to Purity Profiling of Nucleic Acid-Based Products.

Pharmaceutics

December 2024

Gennova Biopharmaceuticals Ltd., ITBT Park, Hinjawadi Phase 2 Rd, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411057, India.

: The nucleic acid-based product (NAP) portfolio is expanding continuously and provides safer curative options for many disease indications. Nucleic acid-based products offer several advantages compared to proteins and virus-based products. They represent an emerging field; thus, their quality control and regulatory landscape is evolving to ensure adequate quality and safety.

View Article and Find Full Text PDF

The formation and architecture of surface-initiated polymer brush gene delivery complexes.

J Colloid Interface Sci

December 2024

School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. Electronic address:

Understanding the architecture and mechanism of assembly of polyelectrolyte-nucleic acid complexes is critical to the rational design of their performance for gene delivery. Surface-initiated polymer brushes were recently found to be particularly effective at delivering oligonucleotides and maintaining high knock down efficiencies for prolonged periods of time, in highly proliferative cells. However, what distinguishes their binding capacity for oligonucleotides from that of larger therapeutic macromolecules remains unknown.

View Article and Find Full Text PDF

Transcriptomic landscapes of STING-mediated DNA-sensing reveal cellular response heterogeneity.

Int J Biol Macromol

February 2025

Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

Transfection of plasmid DNA (pDNA) encoding target genes is a routine tool in gene function studies and therapeutic applications. However, nucleic acid-sensing-mediated innate immune responses influence multiple intracellular signaling pathways. The stimulator of interferon genes (STING) is a crucial adapter protein for DNA sensors in mammalian cells.

View Article and Find Full Text PDF

Advanced Nanotechnology-Based Nucleic Acid Medicines.

Pharmaceutics

October 2024

Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan.

Nucleic acid medicines are a highly attractive modality that act in a sequence-specific manner on target molecules. To date, 21 such products have been approved by the Food and Drug Administration. However, the development of nucleic acid medicines continues to face various challenges, including tissue and cell targeting as well as intracellular delivery.

View Article and Find Full Text PDF

Rapid DNA Repair in Mesenchymal Stem Cells and Bone Regeneration by Nanoparticle-Based Codelivery of Nrf2-mRNA and Dexamethasone.

ACS Nano

November 2024

Department of Medical Life Sciences, Department of Medical Sciences (Graduate School), and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.

Directional differentiation is a key factor determining the result of stem cell therapy. Herein, we developed a polyethylenimine (PEI)-coated poly(lactic--glycolic) acid (PLGA) nanoparticle (mPDN) carrying both nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and dexamethasone (Dex) to human mesenchymal stem cells (hMSCs). The combination of Dex and Nrf2-mRNA delivered by mPDN promoted the osteogenic differentiation of hMSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!