The identification and specific functions of Kupffer cells (KCs), a liver resident macrophage subpopulation, are still unclear. We compared KCs with peritoneal macrophages using cDNA microarray analysis and found that these cells share some antigens with endothelial cells. KCs highly express VCAM-1 and VEGF receptors (VEGF-Rs) at transcriptional and protein levels. VCAM-1 mediates the functional binding of KCs with lymphocytes and induces KC activation. Among the VEGF receptors, VEGF-R2 and VEGF-R3 were expressed on the KCs, while VEGF-R1 was expressed on other tissue macrophage subsets. VEGF120, a ligand of both VEGF-R1 and VEGF-R2, transduced strong survival and chemotactic signals through the KCs, when compared to PIGF, a VEGF-R1 ligand, indicating that VEGF-R2 plays significant roles in regulating KC activities. Expression of the VEGF-Rs was regulated by TLR4 signalling. These results suggest that the function of KCs is partly regulated by the common antigens shared with endothelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/sji.12402DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
liver resident
8
kupffer cells
8
cells share
8
cells kcs
8
vegf receptors
8
kcs
7
cells
6
resident macrophages
4
macrophages kupffer
4

Similar Publications

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

Skin-Integrated Electrogenetic Regulation of Vasculature for Accelerated Wound Healing.

Adv Sci (Weinh)

January 2025

ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.

Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).

View Article and Find Full Text PDF

A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) maintains brain homeostasis but also prevents most drugs from entering the brain. No paracellular diffusion of solutes is allowed because of tight junctions that are made impermeable by the expression of claudin5 (CLDN5) by brain endothelial cells. The possibility of regulating the BBB permeability in a transient and reversible fashion is in strong demand for the pharmacological treatment of brain diseases.

View Article and Find Full Text PDF

Objective: Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!