Unlabelled: In peptide receptor radionuclide therapy with (90)Y-labeled DOTATATE, the kidney absorbed dose limits the maximum amount of total activity that can be safely administered in many patients. A higher tumor-to-kidney absorbed dose ratio might be achieved by optimizing the amount of injected peptide and activity, as recent studies have shown different degrees of receptor saturation for normal tissue and tumor. The aim of this work was to develop and implement a modeling method for treatment planning to determine the optimal combination of peptide amount and pertaining therapeutic activity for each patient.
Methods: A whole-body physiologically based pharmacokinetic (PBPK) model was developed. General physiologic parameters were taken from the literature. Individual model parameters were fitted to a series (n= 12) of planar γ-camera and serum measurements ((111)In-DOTATATE) of patients with meningioma or neuroendocrine tumors (NETs). Using the PBPK model and the individually estimated parameters, we determined the tumor, liver, spleen, and red marrow biologically effective doses (BEDs) for a maximal kidney BED (20 Gy2.5) for different peptide amounts and activities. The optimal combination of peptide amount and activity for maximal tumor BED, considering the additional constraint of a red marrow BED less than 1 Gy15, was individually quantified.
Results: The PBPK model describes the biokinetic data well considering the criteria of visual inspection, the coefficients of determination, the relative standard errors (<50%), and the correlation of the parameters (<0.8). All fitted parameters were in a physiologically reasonable range but varied considerably between patients, especially tumor perfusion (meningioma, 0.1-1 mL·g(-1)·min(-1), and NETs, 0.02-1 mL·g(-1)·min(-1)) and receptor density (meningioma, 5-34 nmol·L(-1), and NETs, 7-35 nmol·L(-1)). Using the proposed method, we identified the optimal amount and pertaining activity to be 76 ± 46 nmol (118 ± 71 μg) and 4.2 ± 1.8 GBq for meningioma and 87 ± 50 nmol (135 ± 78 μg) and 5.1 ± 2.8 GBq for NET patients.
Conclusion: The presented work suggests that to achieve higher efficacy and safety for (90)Y-DOATATE therapy, both the administered amount of peptide and the activity should be optimized in treatment planning using the proposed method. This approach could also be adapted for therapy with other peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2967/jnumed.115.164699 | DOI Listing |
Background: Accumulation of the amyloid-β (Aβ) peptide into amyloid plaque is one of the key pathological markers of Alzheimer's disease (AD). Apolipoprotein E (APOE) is known to modify AD risk and has been reported to influence Aβ accumulation in the brain in an isoform-dependent manner. ApoE can be produced by various cell types in the brain, with astrocytes being the main producer.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Emory University School of Medicine, Atlanta, GA, USA.
Background: The extracellular amyloid plaques, one of the pathological hallmarks of Alzheimers Disease (AD), are frequently also observed in the cortex of cognitively unimpaired subjects or as co-pathology in other neurodegenerative diseases. Progressive deposition of fibrillar amyloid-β (Aβ) as amyloid plaques for two decades prior disease onset leads to extensive isomerization of Aβ N-terminus. Quantifying the extent of isomerized Aβ can be provide insight into the different stages of amyloidosis in the brain.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, NY, Iran (Islamic Republic of).
Background: Alzheimer's disease (AD) is a degenerative condition characterized by a progressive decline in cognitive function, predominantly affecting older individuals. AD is associated with a range of histopathological alterations, including the gradual demise of neuronal cells, the accumulation of amyloid plaques, and the formation of neurofibrillary tangles. Furthermore, research suggests that the brain tissue of AD patients is subject to oxidative stress, which manifests as the oxidation of proteins, lipids, DNA, and the process of glycoxidation, throughout the disease progression.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Center for Neurodegenerative Disease Research, PHILADELPHIA, PA, USA.
Background: Alzheimer's disease (AD) is pathologically defined by the presence of extracellular Aβ plaque and intracellular tau inclusions. Emerging evidence shows that tau aggregates contain pathogenic bioactivities of templating monomeric tau into filamentous fibrils and propagating through cells. Based on these findings, assays have been developed to detect minute amounts of pathogenic tau in human samples.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Iowa, Iowa City, IA, USA.
Background: Sorbs2 is a cytoskeletal adaptor protein that is expressed in hippocampal neurons, but its mechanistic role in these cells is not yet fully understood.
Method: We created two groups of mice for our study: whole-body Sorbs2-Knockout (KO) mice and Sorbs2-Flox mice, which had neuronal knockout via AAV-PHP.eB-hSyn1-Cre virus injection.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!