Disrupted rich club network in behavioral variant frontotemporal dementia and early-onset Alzheimer's disease.

Hum Brain Mapp

Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, California.

Published: March 2016

In network analysis, the so-called "rich club" describes the core areas of the brain that are more densely interconnected among themselves than expected by chance, and has been identified as a fundamental aspect of the human brain connectome. This is the first in-depth diffusion imaging study to investigate the rich club along with other organizational changes in the brain's anatomical network in behavioral frontotemporal dementia (bvFTD), and a matched cohort with early-onset Alzheimer's disease (EOAD). Our study sheds light on how bvFTD and EOAD affect connectivity of white matter fiber pathways in the brain, revealing differences and commonalities in the connectome among the dementias. To analyze the breakdown in connectivity, we studied three groups: 20 bvFTD, 23 EOAD, and 37 healthy elderly controls. All participants were scanned with diffusion-weighted magnetic resonance imaging (MRI), and based on whole-brain probabilistic tractography and cortical parcellations, we analyzed the rich club of the brain's connectivity network. This revealed distinct patterns of disruption in both forms of dementia. In the connectome, we detected less disruption overall in EOAD than in bvFTD [false discovery rate (FDR) critical Pperm  = 5.7 × 10(-3) , 10,000 permutations], with more involvement of richly interconnected areas of the brain (chi-squared P = 1.4 × 10(-4) )-predominantly posterior cognitive alterations. In bvFTD, we found a greater spread of disruption including the rich club (FDR critical Pperm  = 6 × 10(-4) ), but especially more peripheral alterations (chi-squared P = 6.5 × 10(-3) ), particularly in medial frontal areas of the brain, in line with the known behavioral socioemotional deficits seen in these patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883024PMC
http://dx.doi.org/10.1002/hbm.23069DOI Listing

Publication Analysis

Top Keywords

rich club
16
areas brain
12
network behavioral
8
frontotemporal dementia
8
early-onset alzheimer's
8
alzheimer's disease
8
bvftd eoad
8
fdr critical
8
critical pperm
8
brain
5

Similar Publications

Background: In Hong Kong, breast cancer is the commonest female cancer. In addition to intrinsic risk factors that cannot be modified, other factors may be potentially modifiable. The objective of this report was to determine modifiable risk factors in association with breast cancer among Chinese women in our locality.

View Article and Find Full Text PDF

Background: The average fibre consumption of 4-10-year-old children in the UK is 14.6 g per day, with only 14% of these children reaching the 20 g recommended by the SACN (UK Scientific Advisory Committee on Nutrition), and this 'fibre gap' may be most pronounced in communities with the lowest socioeconomic status. School breakfast clubs target children from disadvantaged communities, but their provision may favour lower-fibre foods, due to perceptions that children will reject higher-fibre foods.

View Article and Find Full Text PDF

Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of the literature surrounding the effects of long-chain omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplementation on exercise performance, recovery, and brain health. This position stand is intended to provide a scientific foundation for athletes, dietitians, trainers, and other practitioners regarding the effects of supplemental ω-3 PUFA in healthy and athletic populations. The following conclusions represent the official position of the ISSN: Athletes may be at a higher risk for ω-3 PUFA insufficiency.

View Article and Find Full Text PDF

The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40).

View Article and Find Full Text PDF

The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!