The use of multikinase inhibitors (MKI) in oncology, such as sorafenib, is associated with a cutaneous adverse event called hand-foot skin reaction (HFSR), in which sites of pressure or friction become inflamed and painful, thus significantly impacting quality of life. The pathogenesis of MKI-induced HFSR is unknown, and the only available treatment options involve dose reduction or discontinuation of therapy, which have negative effects on primary disease management. To investigate the underlying mechanisms by which sorafenib promotes keratinocyte cytotoxicity and subsequent HFSR induction, we performed a transporter-directed RNAi screen in human epidermal keratinocytes and identified SLC22A20 (OAT6) as an uptake carrier of sorafenib. Further investigations into the intracellular mechanism of sorafenib activity through in situ kinome profiling identified the mitogen-activated protein kinase MAP3K7 (TAK1) as a target of sorafenib that induces cell death. Finally, we demonstrate that sorafenib induced keratinocyte injury in vivo and that this effect could be reversed by cotreatment with the OAT6 inhibitor probenecid. Collectively, our findings reveal a novel pathway that regulates the entry of some MKIs into keratinocytes and explains the basis underlying sorafenib-induced skin toxicity, with important implications for the therapeutic management of HFSR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4713045PMC
http://dx.doi.org/10.1158/0008-5472.CAN-15-0694DOI Listing

Publication Analysis

Top Keywords

multikinase inhibitors
8
cell death
8
sorafenib
6
inhibitors induce
4
induce cutaneous
4
cutaneous toxicity
4
toxicity oat6-mediated
4
oat6-mediated uptake
4
uptake map3k7-driven
4
map3k7-driven cell
4

Similar Publications

Ependymoma (EPN) is a common form of brain tumor in children, often resistant to available cytotoxic therapies. Molecular profiling studies have led to a better understanding of EPN subtypes and revealed a critical role of oncogenes ZFTA-RELA fusion and EPHB2 in supratentorial ependymoma (ST-EPN). However, the immune system's role in tumor progression and response to therapy remains poorly understood.

View Article and Find Full Text PDF

Rearranged during transfection (RET) lung cancer - Update on targeted therapies.

Lung Cancer

January 2025

Department of Medical Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia; The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia. Electronic address:

The enhanced comprehension of the molecular pathways underpinning oncogenesis in non-small cell lung cancer (NSCLC) has led to the advancement of personalized treatment for individuals with actionable mutations using targeted therapies. The rearranged during transfection (RET) proto-oncogene, is critical in the embryonic development of various tissues, including renal, neural, and neuroendocrine tissue. RET fusions have been observed in approximately 1-2% of NSCLC cases.

View Article and Find Full Text PDF

Cutaneous T-cell lymphomas (CTCLs) are a rare and heterogeneous subset of skin-localized, non-Hodgkin lymphomas. Our aim was to evaluate the in vitro antitumor activity of the multi-kinase inhibitor linifanib, either alone or in combination with metronomic vinorelbine (mVNR) or etoposide (mETO), on CTCL cells. In vitro proliferation assay and Luminex analysis showed that long-term, daily exposure of linifanib significantly inhibited the proliferation of the human CTCL cell line HH, in a concentration-dependent manner (IC = 48.

View Article and Find Full Text PDF

Chromosomal rearrangements are common oncogenic events in Non-Small Cell Lung Cancer. An example is the fusion of the ROS1 kinase domain with extracellular receptors. Although the fusion leads to a target that is druggable with multi-kinase inhibitors, several reports indicate the emergence of point mutations leading to drug resistance.

View Article and Find Full Text PDF

Cabozantinib Selectively Induces Proteasomal Degradation of p53 Somatic Mutant Y220C and Impedes Tumor Growth.

J Biol Chem

January 2025

Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University; Jiangsu, China. Electronic address:

Inactivation of p53 by mutations commonly occurs in human cancer. The mutated p53 proteins may escape proteolytic degradation and exhibit high expression in tumors, and acquire gain-of-function activity that promotes tumor progression and chemo-resistance. Therefore, selectively targeting of the gain-of-function p53 mutants may serve as a promising therapeutic strategy for cancer prevention and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!