Eva1 Maintains the Stem-like Character of Glioblastoma-Initiating Cells by Activating the Noncanonical NF-κB Signaling Pathway.

Cancer Res

Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan. Laboratory for Cell Lineage Modulation, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.

Published: January 2016

Glioblastoma (GBM)-initiating cells (GIC) are a tumorigenic subpopulation that are resistant to radio- and chemotherapies and are the source of disease recurrence. Therefore, the identification and characterization of GIC-specific factors is critical toward the generation of effective GBM therapeutics. In this study, we investigated the role of epithelial V-like antigen 1 (Eva1, also known as myelin protein zero-like 2) in stemness and GBM tumorigenesis. Eva1 was prominently expressed in GICs in vitro and in stem cell marker (Sox2, CD15, CD49f)-expressing cells derived from human GBM tissues. Eva1 knockdown in GICs reduced their self-renewal and tumor-forming capabilities, whereas Eva1 overexpression enhanced these properties. Eva1 deficiency was also associated with decreased expression of stemness-related genes, indicating a requirement for Eva1 in maintaining GIC pluripotency. We further demonstrate that Eva1 induced GIC proliferation through the activation of the RelB-dependent noncanonical NF-κB pathway by recruiting TRAF2 to the cytoplasmic tail. Taken together, our findings highlight Eva1 as a novel regulator of GIC function and also provide new mechanistic insight into the role of noncanonical NF-κB activation in GIC, thus offering multiple potential therapeutic targets for preclinical investigation in GBM.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-15-0884DOI Listing

Publication Analysis

Top Keywords

noncanonical nf-κb
12
eva1
9
gic
5
eva1 maintains
4
maintains stem-like
4
stem-like character
4
character glioblastoma-initiating
4
glioblastoma-initiating cells
4
cells activating
4
activating noncanonical
4

Similar Publications

Introduction: Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal dominant disorder classically associated with multiple basal cell carcinomas, odontogenic keratocysts and skeletal anomalies. However, its significant phenotypic heterogeneity often delays the diagnosis. Here, we undertake the first comprehensive characterisation of NBCCS and congenital urinary tract anomalies.

View Article and Find Full Text PDF

Virulence of many gram-negative bacteria relies upon delivery of type three effectors into host cells. To pass through the conduit of secretion machinery the effectors need to acquire an extended conformation, and in many bacterial species specific chaperones assist in this process. In plant pathogenic bacterium Pseudomonas syringae, secretion of only few effectors requires the function of chaperones.

View Article and Find Full Text PDF

Cyclin switch tailors a cell cycle variant to orchestrate multiciliogenesis.

Cell Rep

December 2024

Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, École Normale Supérieure, PSL Research University, Paris, France. Electronic address:

Meiosis, endoreplication, and asynthetic fissions are variations of the canonical cell cycle where either replication or mitotic divisions are muted. Here, we identify a cell cycle variantconserved across organs and mammals, where both replication and mitosis are muted, and that orchestrates the differentiation of post-mitotic progenitors into multiciliated cells (MCCs). MCC progenitors reactivate most of the cell cycle transcriptional program but replace the temporal expression of cyclins E2 and A2 with non-canonical cyclins O and A1.

View Article and Find Full Text PDF

Cyclin O controls entry into the cell-cycle variant required for multiciliated cell differentiation.

Cell Rep

December 2024

Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France. Electronic address:

Multiciliated cells (MCCs) ensure fluid circulation in various organs. Their differentiation is marked by the amplification of cilia-nucleating centrioles, driven by a genuine cell-cycle variant, which is characterized by wave-like expression of canonical and non-canonical cyclins such as Cyclin O (CCNO). Patients with CCNO mutations exhibit a subtype of primary ciliary dyskinesia called reduced generation of motile cilia (RGMC).

View Article and Find Full Text PDF

Genetic Code Expansion: Recent Developments and Emerging Applications.

Chem Rev

December 2024

Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China.

The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!