Objective: To prepare a composite scattold using bladder acellular matrix (BACM) and polyurethane (PU) for bladder repair and regeneration, and to evaluate its mechanical properties and biocompatibility.

Methods: Fresh bladder tissues were obtained from New Zealand rabbits and then treated with 1%SDS and 1%Triton X-100 to obtain BACM. The BACM was combined with PU to fabricate PU-BACM composite scaffold. The tensile strength and elongation at break of BACM and PU-BACM scaffolds were tested. Scaffolds and extracts of scaffolds were prepared to evaluate the biocompatibility. For cell-proliferation analysis, cell counting kit 8 method was used at 1, 3, 5, and 7 days after co-culture of human. bladder smooth muscle cell (HBSMC) and scaffolds. The cell cycle was tested by flow cytometry after HBSMC co-cultured with extracts of scaffolds and DMEM culture medium (control group) for 24 hours. Finally, 12 New Zealand rabbits were used to establish the model of bladder repair and regeneration. Incision of 5 mm was made on the bladder, and PU-BACM scaffold was sutured with the incision. The rabbits were sacrificed at 10, 20, 40, and 60 days after surgery to observe the inflammatory cell infiltration, new tissues formation, and regeneration of epithelium by HE staining.

Results: The tensile strength of BACM and PU-BACM composite scaffold was (5.78 ± 0.85) N and (11.88 ± 3.21) N, and elongation at break was 14.46% ± 3.21% and 23.14% ± 1.32% respectively, all showing significant diffeence (t = 3.182, P = 0.034; t = 4.332, P = 0.012). The cell-proliferation rates of controls, PU, BACM, and PU-BACM were 36.78% ± 1.21%, 30.49% ± 0.89%, 18.92% ± 0.84%, and 22.42% ± 1.55%, it was significantly higher in PU-BACM than BACM (P < 0.05). In the bladder repair and regeneration experiment, inflammatory cell infiltration was observed at 10 days after operation, and reduced at 20 days after implantation. In the meanwhile, the degradation of scaffolds was observed in vivo. The regeneration of epithelium could be observed after 40 days of implantation. At 60 days after implantation, in situ bladder tissue formed.

Conclusion: PU-BACM composite scaffold has higher mechanical properties and better biocompatibility than BACM scaffold. PU-BACM composite scaffold will not lead to strong immune response, and new bladder tissue can form in the in vivo rabbit bladder repair experiment. These results can provide research basis and theoretical data for further study.

Download full-text PDF

Source

Publication Analysis

Top Keywords

composite scaffold
20
bladder repair
16
pu-bacm composite
16
repair regeneration
12
bacm pu-bacm
12
days implantation
12
bladder
10
acellular matrix
8
bacm
8
mechanical properties
8

Similar Publications

Advances in lacrimal gland organoid development: Techniques and therapeutic applications.

Biomed Pharmacother

January 2025

Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., Seoul, Republic of Korea. Electronic address:

The human lacrimal gland (LG), located above the outer orbital region within the frontal bone socket, is essential in maintaining eye surface health and lubrication. It is firmly anchored to the orbital periosteum by the connective tissue, and it is vital for protecting and lubricating the eye by secreting lacrimal fluid. Disruption in the production, composition, or secretion of lacrimal fluid can lead to dry eye syndrome, a condition characterized by ocular discomfort and potential eye surface damage.

View Article and Find Full Text PDF

Introduction: Bacterial infection, a complex wound microenvironment, and a persistent inflammatory response in acute wounds can result in delayed healing and abnormal scar formation, thereby compromising the normal function and aesthetic appearance of skin tissue. This issue represents one of the most challenging problems in clinical practice. This study aims to develop a hydrogel dressing specifically designed for the treatment of acute wounds, providing immediate and effective protection for the affected areas.

View Article and Find Full Text PDF

Research on bone substitutes for repairing bone defects has drawn increasing attention, and the efficacy of three-dimensional (3D) printed bioactive porous scaffolds for bone defect repair has been well documented. Our previous studies have shown that psoralen can promote osteogenesis by activating the Wnt/β-catenin and BMP/Smad signaling pathways and their crosstalk effects, and psoralen nanospheres have a good osteogenesis-promoting effect with low cytotoxicity. The Chinese medicine oyster shell powder, characterized by its porous structure, strong adsorption, and unique bioactivity, has potential in fracture-promoting repair materials.

View Article and Find Full Text PDF

Bio-inspired mineralized collagen scaffolds with precisely controlled gradients for the treatment of severe osteoarthritis in a male rabbit model.

Int J Biol Macromol

January 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China. Electronic address:

Osteoarthritis affects approximately 500 million individuals globally, with severe cases often leading to osteochondral defects. Biomimetic collagen-hydroxyapatite scaffolds have been investigated for the treatment of osteochondral defects. However, achieving precise mimicry of the intricate composition, gradient nanostructure, and biological function of native tissue remains a formidable challenge.

View Article and Find Full Text PDF

Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!