Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles.

Int J Nanomedicine

Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic ; Institute of Biophysics, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic ; Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic.

Published: August 2016

In this study, we have developed a combined approach to accelerate the proliferation of mesenchymal stem cells (MSCs) in vitro, using a new nanofibrous scaffold made by needleless electrospinning from a mixture of poly-ε-caprolactone and magnetic particles. The biological characteristics of porcine MSCs were investigated while cultured in vitro on composite scaffold enriched with magnetic nanoparticles. Our data indicate that due to the synergic effect of the poly-ε-caprolactone nanofibers and magnetic particles, cellular adhesion and proliferation of MSCs is enhanced and osteogenic differentiation is supported. The cellular and physical attributes make this new scaffold very promising for the acceleration of efficient MSC proliferation and regeneration of hard tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4677649PMC
http://dx.doi.org/10.2147/IJN.S93670DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
8
poly-ε-caprolactone nanofibers
8
magnetic nanoparticles
8
magnetic particles
8
highly efficient
4
efficient mesenchymal
4
stem cell
4
proliferation
4
cell proliferation
4
proliferation poly-ε-caprolactone
4

Similar Publications

Cellular therapy is a promising treatment option for Peripheral Arterial Disease (PAD). Different cell types can be used to regenerate and repair tissues affected by PAD. Many studies have proposed the use of stem cells, such as mesenchymal stem cells, or even mononuclear cells isolated from peripheral blood or bone marrow, to treat PAD.

View Article and Find Full Text PDF

Introduction: Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease characterized by a lack of effective therapies. Mesenchymal stem cells (MSCs) have garnered significant interest in the realm of lung regeneration due to their abundant availability, ease of isolation, and capacity for expansion. The objective of our study was to investigate the potential therapeutic role of umbilical cord-derived MSCs (UC-MSCs) in the management of PF, with a focus on the alterations in the gut microbiota and its metabolites during the use of UC-MSCs for the treatment of pulmonary fibrosis, as well as the possible mechanisms involved.

View Article and Find Full Text PDF

To illustrate the potential of mesenchymal stem cell-derived exosomes (MSC-Exos) in mitigating septic lung injury by reducing the excessive formation of neutrophil extracellular traps (NETs), a mouse model of septic lung injury was induced through cecal ligation and puncture (CLP). The mice received intraperitoneal injections of MSC-Exos. Post injection, pathological alterations of the lung tissue were evaluated through HE staining, and the levels of inflammatory markers in each mouse group at various time points were assessed using ELISA kits.

View Article and Find Full Text PDF

The main goal of the current study is to estimate the in vivo anti-inflammatory/antioxidant ability of four selected pharmaceutical compounds: bisoprolol (Biso), piracetam (Pirc), clopidogrel (Clop), and cinnarizine (Cinna). Indomethacin (Indo) was used as a reference drug to perform a realistic comparison between the four compounds and the Indo in vivo through tracking PI3K/AKT signaling and computational chemistry via density functional theory (DFT) modeling to analyze the electrostatic potential across the molecule and provide insight into the regions for receptor binding of the studied compounds. To achieve the safe dose of these compounds, cytotoxicity was performed against isolated adipose tissue-derived mesenchymal stem cells (ADMSCs) using MTT assay.

View Article and Find Full Text PDF

As functional derivatives of mesenchymal stem cells (MSCs), small extracellular vesicles (sEVs) have garnered significant attention and application in regenerative medicine. However, the technical limitations for large-scale isolation of sEVs and their heterogeneous nature have added complexity to their applications. It remains unclear if the heterogeneous sEVs represent different aspects of MSCs functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!