Introduction: Clinical Dermatology is a visually oriented specialty, where visually oriented teaching is more important than it is in any other specialty. It is essential that students must have repeated exposure to common dermatological disorders in the limited hours of Dermatology clinical teaching.

Aim: This study was conducted to assess the effect of clinical images based teaching as a supplement to the patient based clinical teaching in Dermatology, among final year MBBS students.

Methods: A clinical batch comprising of 19 students was chosen for the study. Apart from the routine clinical teaching sessions, clinical images based teaching was conducted. This teaching method was evaluated using a retrospective pre-post questionnaire. Students' performance was assessed using Photo Quiz and an Objective Structured Clinical Examination (OSCE). Feedback about the addition of images based class was collected from students.

Results: A significant improvement was observed in the self-assessment scores following images based teaching. Mean OSCE score was 6.26/10, and that of Photo Quiz was 13.6/20.

Conclusion: This Images based Dermatology teaching has proven to be an excellent supplement to routine clinical cases based teaching.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681192PMC
http://dx.doi.org/10.4103/0019-5154.169125DOI Listing

Publication Analysis

Top Keywords

images based
24
based teaching
20
clinical images
12
clinical teaching
12
teaching
11
clinical
10
based
8
teaching supplement
8
teaching dermatology
8
visually oriented
8

Similar Publications

Purpose: With the widespread introduction of dual energy computed tomography (DECT), applications utilizing the spectral information to perform material decomposition became available. Among these, a popular application is to decompose contrast-enhanced CT images into virtual non-contrast (VNC) or virtual non-iodine images and into iodine maps. In 2021, photon-counting CT (PCCT) was introduced, which is another spectral CT modality.

View Article and Find Full Text PDF

Enhancing Medical Student Engagement Through Cinematic Clinical Narratives: Multimodal Generative AI-Based Mixed Methods Study.

JMIR Med Educ

January 2025

Department of Medical Education, University of Idaho, 875 Perimeter Drive MS 4061, WWAMI Medical Education, Moscow, ID, 83844-9803, United States, 1 5092090908.

Background: Medical students often struggle to engage with and retain complex pharmacology topics during their preclinical education. Traditional teaching methods can lead to passive learning and poor long-term retention of critical concepts.

Objective: This study aims to enhance the teaching of clinical pharmacology in medical school by using a multimodal generative artificial intelligence (genAI) approach to create compelling, cinematic clinical narratives (CCNs).

View Article and Find Full Text PDF

Tongue Muscle Training App for Middle-Aged and Older Adults Incorporating Flow-Based Gameplay: Design and Feasibility Pilot Study.

JMIR Serious Games

January 2025

Department of Interaction Design, National Taipei University of Technology, Rm.701-4, Design Building, No.1, Sec.3, Chung-hsiao E. Rd, Taipei, 10608, Taiwan, 886 912-595408, 886 2-87732913.

Background: Complications due to dysphagia are increasingly prevalent among older adults; however, the tediousness and complexity of conventional tongue rehabilitation treatments affect their willingness to rehabilitate. It is unclear whether integrating gameplay into a tongue training app is a feasible approach to rehabilitation.

Objective: Tongue training has been proven helpful for dysphagia treatment.

View Article and Find Full Text PDF

The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.

View Article and Find Full Text PDF

Role of data-driven regional growth model in shaping brain folding patterns.

Soft Matter

January 2025

School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.

The surface morphology of the developing mammalian brain is crucial for understanding brain function and dysfunction. Computational modeling offers valuable insights into the underlying mechanisms for early brain folding. Recent findings indicate significant regional variations in brain tissue growth, while the role of these variations in cortical development remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!