With the application of tissue engineering to tissue regeneration, additional new complexes have been made in response to the challenge of cartilage-injury repair. This study was performed to construct a rat precartilaginous stem cells-based scaffold of self-assembling peptides RADA16-I/PLGA-PLL (poly-L-lysine coated PLGA) as extracellular matrix loading the NLS-TAT as a peptide-based carrier for a plasmid DNA containing hTGFβ3. After composites were cultured for 1, 2, 3 and 4 weeks, respectively, the results showed that the levels of chondrogenic-related gene expression were higher in the experimental group with and hTGFβ3 gene by reverse transcription-polymerase chain reaction, and with higher histochemical and immunohistochemical expression. hTGFβ3 protein expression had increased at 4 weeks based on western blot analysis. The results of this study show that a complex may be a suitable scaffold for cartilage repair and offer a strategy for tissue regeneration through the use of tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-015-5631-zDOI Listing

Publication Analysis

Top Keywords

scaffold self-assembling
8
plasmid dna
8
tissue engineering
8
tissue regeneration
8
chondrogenic cell-based
4
cell-based scaffold
4
self-assembling peptides/plga-pll
4
peptides/plga-pll loading
4
htgfβ3
4
loading htgfβ3
4

Similar Publications

Introduction: Tooth extraction initiates a cascade of homeostatic and structural modifications within the periodontal tissues, culminating in alveolar ridge resorption. To prevent ridge resorption following extraction and facilitate successful placement of an implant-supported prosthesis, alveolar ridge preservation was performed.

Methods: In this study, the biocompatibility of a nanocomposite consisting of self-assembling peptide nanofibers (organic phase) and tri-calcium phosphate-nano hydroxyapatite (mineral phase), was evaluated in rabbits.

View Article and Find Full Text PDF

Rubisco packaging and stoichiometric composition of the native β-carboxysome in Synechococcus elongatus PCC7942.

Plant Physiol

December 2024

Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.

Carboxysomes are anabolic bacterial microcompartments that play an essential role in CO2 fixation in cyanobacteria. This self-assembling proteinaceous organelle uses a polyhedral shell constructed by hundreds of shell protein paralogs to encapsulate the key CO2-fixing enzymes Rubisco and carbonic anhydrase. Deciphering the precise arrangement and structural organization of Rubisco enzymes within carboxysomes is crucial for understanding carboxysome formation and overall functionality.

View Article and Find Full Text PDF

There have been remarkable advancements in regenerative medicine for bone regeneration, tackling the worldwide health concern of tissue loss. Tissue engineering uses the body's natural capabilities and applies biomaterials and bioactive molecules to replace damaged or lost tissues and restore their functionality. While synthetic ceramics have overcome some challenges associated with allografts and xenografts, they still need essential growth factors and biomolecules.

View Article and Find Full Text PDF

Objectives: The modern approach to managing noncavitated white spot lesions (WSLs) emphasizes noninvasive strategies and biomimetic remineralization. Biomimetic scaffolds are designed to regenerate dental tissues rather than simply repair them. This study aimed to assess lesion depth, enamel structure, and the elemental composition of artificially induced WSLs after treatment with biomimetic remineralization techniques.

View Article and Find Full Text PDF

Transglutaminase-triggered dual gradients of mechanical and biochemical cues self-assembling peptide hydrogel for guiding MC3T3-E1 cell behaviors.

Int J Biol Macromol

January 2025

State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China. Electronic address:

The mechanical properties and bioactive motif densities of extracellular matrix materials play crucial roles in regulating cell behaviors, such as cell adhesion, migration, proliferation, and differentiation. However, current studies on cellular responses to ECM predominantly concentrated on polymer hydrogels featuring a single factor, such as the mechanical strength, the types of bioactive motifs, and the morphology of the polymers. This limited focus may overlook the complex interplay of multiple factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!