Neurological complications of diabetes are common, affecting up to 50% of people with diabetes. In these patients, diabetic sensorimotor neuropathy (DSPN) is by far the most frequent complication. Detecting DSPN has traditionally been a clinical exercise that is based on signs and symptoms. However, the appearance of morphometric and neurophysiological techniques along with composite scoring systems and new screening tools has induced a paradigm change in the detection and stratification of DSPN and our understanding of its natural history and etiopathogenesis. These newer techniques have provided further evidence that changes in small nerve fiber structure and function precede large fiber changes in diabetes. Although useful, the challenge for the use of these new techniques will be their sensitivity and specificity when widely adopted and ultimately, their ability to demonstrate improvement when pathogenic mechanisms are corrected. Concurrently, we have also witnessed an emergence of simpler screening tools or methods that are mainly aimed at quicker detection of large fiber neuropathy in the outpatient setting. In this review, we have focused on techniques and tools that receive particular attention in the current literature, their use in research and potential use in the clinical environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397982 | PMC |
http://dx.doi.org/10.1900/RDS.2015.12.29 | DOI Listing |
J Neurol
January 2025
Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
Background And Objective: Neuronal intranuclear inclusion disease (NIID) is a multifaceted disorder impacting both the central and peripheral nervous systems. This study aims to investigate the clinical and electrophysiological characteristics of peripheral neuropathy in patients with NIID.
Methods: In this cross-sectional study, patients diagnosed with NIID were prospectively recruited from multiple centers across China between October 2017 and May 2024.
PLoS Genet
January 2025
Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
Diabetic sensorimotor neuropathy (DSPN) is strongly associated with the extent of cellular oxidative stress and endothelial dysfunction in type 2 diabetes (T2DM). Alpha-lipoic acid (ALA) attenuates the progression of DSPN through its antioxidant and vasculoprotective effects. Kallistatin has antioxidant and anti-inflammatory properties.
View Article and Find Full Text PDFCureus
December 2024
Anesthesiology, Hospital Vila Franca de Xira, Lisboa, PRT.
Pneumologie
December 2024
Poliklinik für Kieferorthopädie und Zahnheilkunde, Philipps-Universitat Marburg, Marburg, Deutschland.
Pharyngeal stability is ensured by both anatomical and non-anatomical factors. In addition to the anatomical width, functional factors are also significant in determining the degree of obstruction of the upper airway. The functionality of the pharyngeal muscles depends on an undisturbed sensorimotor system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!