The effect of microbial sulfidogenesis on As transformation and mobilization in solid phase with low Fe/As ratio is still not well known. In this study, microbial transformation and mobilization of As in the As-Fe coprecipitate with different sulfate levels were investigated using chemical extraction and K-edge XANES of As and S. Results showed that approximately 2.7, 24.4, and 83.7 % of total As were released into the aqueous phase in the low-, mid-, and high-sulfate treatments, respectively, indicating that the presence of large amounts of sulfate could enhance microbial arsenic mobilization in the As-Fe coprecipitate. In the low-sulfate treatment, As mobilization was primarily attributed to the reductive dissolution of the Fe (oxy)hydroxides and the As reduction and desorption. In the mid- and high-sulfate treatments, the reduction of arsenate and ferric iron was significantly enhanced. Complete ferric iron reduction was observed in the solid phase, implying that Fe (oxy)hydroxide was transformed to secondary minerals and may be the one of the primary causes for the enhanced As mobilization. Thermodynamic calculations predicted the formation of thioarsenite species after 35 days of incubation based on the concentration of dissolved As(III) and S(-II). Since thioarsenic species is more mobile, its formation may be one of the most important factors enhancing the As release in the high-sulfate system. The result of this study is of significance to completely predict the environmental behavior of As associated with Fe (hydr)oxides in the presence of microbial sulfidogenesis under anoxic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-015-5927-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!