Application of membrane processes in fractionation of elements in river water.

Water Sci Technol

Aix Marseille Université, CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europôle de l'Arbois, BP80, Pavillon Laennec, Hall C, 13545 Aix-en-Provence Cedex 4, France E-mail:

Published: March 2016

The influence of wastewater treatment plant (WWTP) effluents from one microelectronic industrial zone on element concentrations and partitioning in river water was investigated. The stepwise membrane filtration is used to distinguish different size fractions including large particulate (>18 μm), particulate (0.2-18 μm), colloidal/nanoparticle (10 kDa-0.2 μm) and truly dissolved fractions (<10 kDa) in river water samples and WWTP effluents. Results demonstrated that anthropogenic inputs (WWTP effluents and industrial area) had an important influence on concentrations and partitioning of some elements in river water. Mass balance results showed that membrane filtration processes could realize a good fractionation for many elements (good recoveries) in water samples. Flux decline during 0.2 μm and 10 kDa filtrations were analyzed, and corresponding fouling mechanisms are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2015.444DOI Listing

Publication Analysis

Top Keywords

river water
8
application membrane
4
membrane processes
4
processes fractionation
4
fractionation elements
4
elements river
4
water influence
4
influence wastewater
4
wastewater treatment
4
treatment plant
4

Similar Publications

Alterations caused by human activities in the environment, such as dredging, modify the physicochemical conditions and affect the habitat. Maintenance dredging that allows large vessels access to inland ports is a recurring disruptive action. The study aimed to evaluate, during a maintenance dredging operation in a port area of the Paraná River, the modifications in the structure of the river, the presence of contaminants and bacterial organisms.

View Article and Find Full Text PDF

Background: Urbanization coupled with poverty has promoted the exploitation of risk zones like flood-prone areas in the city of Yaoundé. The overcrowding and poor hygiene observed in these areas are responsible for the unsmiling variations in environmental cleanliness, exploitation of river water for domestic purposes thus putting them at risk for parasitic disease transmissions. This study was conducted in order to assess the risks of human helminthiases outbreaks in relation to water physico-chemical factors in the city of Yaoundé.

View Article and Find Full Text PDF

The leaf economics spectrum (LES) characterizes a tradeoff between building a leaf for durability versus for energy capture and gas exchange, with allocation to leaf dry mass per projected surface area (LMA) being a key trait underlying this tradeoff. However, regardless of the biomass supporting the leaf, high rates of gas exchange are typically accomplished by small, densely packed stomata on the leaf surface, which is enabled by smaller genome sizes. Here, we investigate how variation in genome size-cell size allometry interacts with variation in biomass allocation (i.

View Article and Find Full Text PDF

This study investigates the critical impact of incipient sediment motion on sediment transport estimation and riverbed evolution prediction. In this research, we examine the effects of ice cover on the vertical distribution of flow velocity, establishing a mathematical relationship between the vertical average flow velocities in open channel and ice-covered flows. This leads to the derivation of a formula for incipient motion velocity under ice cover.

View Article and Find Full Text PDF

Emerging organic contaminants (EOCs) are a growing concern for aquatic ecosystems, underscoring the need for advanced risk assessment methodologies. This study employed an integrated approach to evaluate the risks associated with 563 EOCs across 13 monitoring sites along the Sava River in Croatia. Sampling was conducted during the winter and spring months, spanning February to May.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!